Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build Status PyPI version PyPI wheel Supported Python versions

EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

May 8, 2021: Release v0.11.0, see release notes here

Previous releases

March 22, 2021: Release v0.10.0, see release notes here

March 11, 2021: Release v0.9.2, see release notes here

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Instrumental Variables (click to expand)
  • Intent to Treat Doubly Robust Learner (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from sklearn.linear_model import LinearRegression

est = LinearIntentToTreatDRIV(model_Y_X=GradientBoostingRegressor(),
                              model_T_XZ=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X) # OLS inference by default
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import Rscorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             linear_first_stages=False, cv=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), cv=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, cv=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             linear_first_stages=False, cv=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

Policy Learning

You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect.

Doubly Robust Policy Learning (click to expand)
from econml.policy import DRPolicyTree, DRPolicyForest
from sklearn.ensemble import RandomForestRegressor

# fit a single binary decision tree policy
policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the binary decision tree
plt.figure(figsize=(10,5))
policy.plot()
# get feature importances
importances = policy.feature_importances_

# fit a binary decision forest
policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the first tree in the ensemble
plt.figure(figsize=(10,5))
policy.plot(0)
# get feature importances
importances = policy.feature_importances_

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run python setup.py develop to get started.

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use python setup.py pytest.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Microsoft Research. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Microsoft Research},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/microsoft/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

References

Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1 (2021): 133-161.

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2020

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Dudik, M., Erhan, D., Langford, J., & Li, L. Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511, 2014.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.11.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

econml-0.11.0-cp38-cp38-win_amd64.whl (901.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.11.0-cp38-cp38-win32.whl (801.3 kB view details)

Uploaded CPython 3.8 Windows x86

econml-0.11.0-cp38-cp38-manylinux2010_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

econml-0.11.0-cp38-cp38-manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

econml-0.11.0-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

econml-0.11.0-cp38-cp38-manylinux1_i686.whl (3.1 MB view details)

Uploaded CPython 3.8

econml-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl (910.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

econml-0.11.0-cp37-cp37m-win_amd64.whl (892.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

econml-0.11.0-cp37-cp37m-win32.whl (792.2 kB view details)

Uploaded CPython 3.7m Windows x86

econml-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

econml-0.11.0-cp37-cp37m-manylinux2010_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

econml-0.11.0-cp37-cp37m-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m

econml-0.11.0-cp37-cp37m-manylinux1_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m

econml-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (911.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

econml-0.11.0-cp36-cp36m-win_amd64.whl (891.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

econml-0.11.0-cp36-cp36m-win32.whl (792.1 kB view details)

Uploaded CPython 3.6m Windows x86

econml-0.11.0-cp36-cp36m-manylinux2010_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

econml-0.11.0-cp36-cp36m-manylinux2010_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

econml-0.11.0-cp36-cp36m-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m

econml-0.11.0-cp36-cp36m-manylinux1_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m

econml-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl (914.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file econml-0.11.0.tar.gz.

File metadata

  • Download URL: econml-0.11.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0.tar.gz
Algorithm Hash digest
SHA256 779e91b8d04b2b888ba65dab23a4e1af51730b566fa000c62c59edc3f3306631
MD5 1b145eff9528b1d4360b3eb46378d71c
BLAKE2b-256 ca2dd4a16803e36c78e1da2feb521012b240a1c6abb2d5ea0681ef425afd42a3

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 901.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ed7274deef00ac3303b1d47a0f5d94f57da6f1dc9b441e8a3a29a08251452d28
MD5 82bdae6d2d54ce844443c9f8dd104a55
BLAKE2b-256 10e5fad59065b28914d6e3a51c3d93d140393c2eb40e1d99728ceb6a5fa2ec74

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 801.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 94fc2be665fd112257dbab77390b82363dbe308a4d7782a424e252e57706413b
MD5 4a8423b6070d3c081e7de598e5ba8171
BLAKE2b-256 0bd1923f3265f39637c52f0f37a2f9f3dbd82a8f67c89289716feca2e99cb0d0

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 45627fb982a7a9b65e56cfe17a9ebe4219245a9b5a81b1f45f50dfca37c98178
MD5 8602a9b7e4bb9529057f8b3a38acc820
BLAKE2b-256 111f4a376028529132d0c4af21ca3737940fe5ef3e508d3b1494cdb36bfd2cfc

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d48717d7131efdb75f3f53f545fbad6ca48490d0288320d3199519112541f4b9
MD5 4ff9adc40df13397092f4415661b874b
BLAKE2b-256 576e18469857582d80b88c4965db16744efbc8ce8e2d5bd72966a09c85255058

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 797cbaffde3431388bc75fdd5c9470f2c544d92ba816abd6af3b553252a3c7e4
MD5 d6e5167f135ab84bffb28bf71d3510f6
BLAKE2b-256 e2bdeb523483bdbcd6be80b5178a0292c53e0a5625c5a15ec665123077170f95

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b5dc484e938a280c983bfead1d8a24af5814c036b20a22faf87cd9c05c0d39c
MD5 d45c3904b487f92e36183839b2362bb0
BLAKE2b-256 60b4281af8cb3b3bc4649ec456c39d015f1cdce58b5560bacb45f0a95ad5d62e

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 910.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b811d44a137736c955ace3fc2ef48d78d213ac75a808e12a8a846e565d6f79c9
MD5 080e5b21a1ca4e8874777453f537db71
BLAKE2b-256 fe509dfd628617c8f8c39a6ee3bb8aafcd2c81566891899cafb852406c0631cf

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 892.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c33b7631957a932a017b1817d869bf2d26679ffc43aa65cc3403d49eb6b8f051
MD5 727a53e29d1991c670c2c0efc18d9072
BLAKE2b-256 2285dbc9a8570bdca304506216286208810e99a3f2d47b1724e3f80d70d5ef02

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 792.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8de8cf387aedbe4d32ca672352226b5c16582d57be6692999e8c27cb94f66f5d
MD5 46c79c6b57200ca009d368857fef75a9
BLAKE2b-256 292aab62346e46c93e21da850e404dc90c3c8ae3c479669d1168b0c928c8d8dd

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7c665e4962aaa8c4c1f20740d65a197421b2ec05baccbd3fa55d46fd3218ef20
MD5 500b8e17c00e33e1cc101a0efd57a6f3
BLAKE2b-256 1e8a046a7de22acc686293d0ab953f81bb3b7da68b1ff7defd67025efdbd5090

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1ab20ff715d16df5f5fc0c8d3a03efb88e314b887f18d098280e2ee0ce9cd30a
MD5 60b19e9cb829868061f29ce51a13cbaa
BLAKE2b-256 3949ca57c02597851e680f73db992c3727c368ac6ea0a02583c26858223cceeb

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82bbff77a0cb43276aaf997b31e0f462b591c1f26f3a489fc5343e0a119dcbbe
MD5 0e4f2c29f54a5ff6c0e5eff64ea77bac
BLAKE2b-256 b64e1814394af4b89541b359b65c8db8695cbe54ce85ff6064697810ef5cfdec

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a37f06ae7527de7df3d452f18d2207c4257770f6995ec62eb7235831c2013f01
MD5 06c1a4047e119a6fb5b28e0a144b2d38
BLAKE2b-256 f857d6b4ccba962a9a772d6ca4085c951267cd002b83ba54a1bcd719eb64bb57

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 911.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2d8bb3782966c7172e42047267f9eafdc94ee03b3a7f1896e51b1c70cc4da36
MD5 17a0d3c33ce50ee5860cb3fd88ba58c9
BLAKE2b-256 be9c642c762f1828c917b5a10dfffe93d1e676b42e547b5ffca71fdf055958f9

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 891.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3112f614a65cc7c83a87ab5a8f52aee748415795e2b3378075aed8040930d99a
MD5 fe88a49f813abd0c724b6bc1d3fa9ce0
BLAKE2b-256 d5a4403e6d87a154da6e387e29144bc56596975c8c48da97164f748bb7409d61

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 792.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b157fad4ff485f38fdce431310b086ace7c35c10b9b71c2a58db78e1c08d5e2f
MD5 038c3f159083a6d8518e75b341c0b364
BLAKE2b-256 ece886e45966ce75267dd791536e6060142267c8cf0d6b2fbdca93256beb90a4

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d971ee89c389af8501ca87f4a3167889a3836c95a8a46bc6def0beedc5ecef9
MD5 a08ebeb9fd588477c0452f80aface214
BLAKE2b-256 ca342fb57eecbcebaac31f0b884889c5d78ba06d6e4f514666cdd0129dc70b46

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 37c5820db5354ca99138d3e4d7bacb0769da525e2111207ba433878211f39926
MD5 02339a0f9f0e37003dcafd393b11ec8e
BLAKE2b-256 721f8ff5526184f86d4f806c944bd4cdc327c8c3dff402610856af47a72f5443

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fe43cbaf94d1d6a2c79add0c470f006976d03486e4bf7ae389734965036c7b90
MD5 12a3b3fc9c10135aaa5ac0413198ee86
BLAKE2b-256 94aa726fa1106fd3bfd06d6c26ade7611150472283e4cb23c7fa887e957948b3

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e0f39d5274861aea80f85c04a69677ce90324b3a50a52fceca2f7dbf81438b99
MD5 ed7145f40bb740780fd2451d201ae11a
BLAKE2b-256 9246adf39292543dd6bf172d8acc93640a673f3e95227ff4a36ce7d23a8d1265

See more details on using hashes here.

File details

Details for the file econml-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 914.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0655faca404734d65e34c2d7d79dea6f89fc612bae3511923e0ce58191c055be
MD5 875ef6c0f311a4c6fcad760c2fe1da88
BLAKE2b-256 0ca56de4088a06b4133120dabc08d427248e86dab2e4d0f6b1de9fcf9b6876cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page