Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build Status PyPI version PyPI wheel Supported Python versions

EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

June 18, 2021: Release v0.12.0b2, see release notes here

Previous releases

June 7, 2021: Release v0.12.0b1, see release notes here

May 18, 2021: Release v0.11.1, see release notes here

May 8, 2021: Release v0.11.0, see release notes here

March 22, 2021: Release v0.10.0, see release notes here

March 11, 2021: Release v0.9.2, see release notes here

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Instrumental Variables (click to expand)
  • Intent to Treat Doubly Robust Learner (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from sklearn.linear_model import LinearRegression

est = LinearIntentToTreatDRIV(model_Y_X=GradientBoostingRegressor(),
                              model_T_XZ=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X) # OLS inference by default
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import Rscorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             linear_first_stages=False, cv=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), cv=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, cv=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             linear_first_stages=False, cv=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

Policy Learning

You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect.

Doubly Robust Policy Learning (click to expand)
from econml.policy import DRPolicyTree, DRPolicyForest
from sklearn.ensemble import RandomForestRegressor

# fit a single binary decision tree policy
policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the binary decision tree
plt.figure(figsize=(10,5))
policy.plot()
# get feature importances
importances = policy.feature_importances_

# fit a binary decision forest
policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the first tree in the ensemble
plt.figure(figsize=(10,5))
policy.plot(0)
# get feature importances
importances = policy.feature_importances_

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run pip install -e . to get started (but depending on what you're doing you might want to install with extras instead, like pip install -e .[plt] if you want to use matplotlib integration, or you can use pip install -e .[all] to include all extras).

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use pip install pytest-runner followed by python setup.py pytest.

We have added pytest marks to some tests to make it easier to run a subset, and you can set the PYTEST_ADDOPTS environment variable to take advantage of this. For instance, you can set it to -m "not (notebook or automl)" to skip notebook and automl tests that have some additional dependencies.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Microsoft Research. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Microsoft Research},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/microsoft/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

References

Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1 (2021): 133-161.

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2020

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Dudik, M., Erhan, D., Langford, J., & Li, L. Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511, 2014.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.12.0b2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

econml-0.12.0b2-cp38-cp38-win_amd64.whl (908.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.12.0b2-cp38-cp38-win32.whl (807.0 kB view details)

Uploaded CPython 3.8 Windows x86

econml-0.12.0b2-cp38-cp38-manylinux2010_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

econml-0.12.0b2-cp38-cp38-manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

econml-0.12.0b2-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

econml-0.12.0b2-cp38-cp38-manylinux1_i686.whl (3.1 MB view details)

Uploaded CPython 3.8

econml-0.12.0b2-cp38-cp38-macosx_10_9_x86_64.whl (915.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

econml-0.12.0b2-cp37-cp37m-win_amd64.whl (899.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

econml-0.12.0b2-cp37-cp37m-win32.whl (798.0 kB view details)

Uploaded CPython 3.7m Windows x86

econml-0.12.0b2-cp37-cp37m-manylinux2010_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

econml-0.12.0b2-cp37-cp37m-manylinux2010_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

econml-0.12.0b2-cp37-cp37m-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m

econml-0.12.0b2-cp37-cp37m-manylinux1_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m

econml-0.12.0b2-cp37-cp37m-macosx_10_9_x86_64.whl (917.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

econml-0.12.0b2-cp36-cp36m-win_amd64.whl (898.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

econml-0.12.0b2-cp36-cp36m-win32.whl (797.8 kB view details)

Uploaded CPython 3.6m Windows x86

econml-0.12.0b2-cp36-cp36m-manylinux2010_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

econml-0.12.0b2-cp36-cp36m-manylinux2010_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

econml-0.12.0b2-cp36-cp36m-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m

econml-0.12.0b2-cp36-cp36m-manylinux1_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m

econml-0.12.0b2-cp36-cp36m-macosx_10_9_x86_64.whl (920.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file econml-0.12.0b2.tar.gz.

File metadata

  • Download URL: econml-0.12.0b2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2.tar.gz
Algorithm Hash digest
SHA256 316c0add374d92393afc7a65abade6e22d34fc48f48a777861d2ddfc00497b8b
MD5 6732b11350661f64c39e42d62e9cfe77
BLAKE2b-256 732aaf0442c80e76c6cb8fc52532e956074a4ef991f46f65c625813cc0808c4e

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 908.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 81ad4d3b0a08882e336686cc6031f7cfb27677ed6c1cec66c23ef5d94ceaac02
MD5 0f75ae35b7f50610a148a1be3f5eefb2
BLAKE2b-256 72a093689bd3586d2eb4b41b64862e72b4fe203a71d3a72c8862771f57c6d593

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-win32.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 807.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cf315527c041c230f5cffee47bfd65fefb4d381562ec234e732ca285d9accdf8
MD5 b8d752f436aaa5020e2fd99481344242
BLAKE2b-256 d88d9b21d6308cd7d4b0756e7f6fafcf3034a9e0b6de2bb7a22bd5a7dfbf914b

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d05b4cac06c8c903bd537ce640398ba6f1068d4a8ddfd359be7304210caf168c
MD5 cbb71cf37b7ce24695b1cbfe0c9f839b
BLAKE2b-256 a2909bca7c5bf5c46d28d002d85c92af01dac5bba92ae342e483e06ad11ed5f1

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8ee654364cf21d4f895b65ec255f9889b1e4730f327d337d01a95d74fd650cef
MD5 b864f1a96df4015c00748a79faab0b40
BLAKE2b-256 b7c7442160361941c75595cb611366264788eee2b2b06d60bcecd0949d39488e

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1634980b1d4e3e086f920eb1d409de7fa1aa0909dd15c678107d1f75044d9fe3
MD5 52e2e03b20910f8b41fc5704806caada
BLAKE2b-256 07ae69191dc0df86d48ee7b4034882409c95900568e6d68d179668884ae4025a

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 74b1ef3ae722059619997d9d3e21b8e7f5ac79ace2578a4d2dffac6388199ab2
MD5 00ac1c1c63c966b0352c4e2c4ab176a2
BLAKE2b-256 712d655acce27e55565fdca27e2b1336798911fef29d3335fa3539a4f575d4f7

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 915.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e62a4aab8f1dcc54a04096c39d2db4c6af005934038f414d96c45f64dc924221
MD5 15a8400bf865b18f84e56c50e46a5f2e
BLAKE2b-256 8b81cfff3841749c526974a8a738e95d66a54ea49ae5594c02fc69aff129057c

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 899.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1c7e21a619eda5903c46263e1f853e7e9456ff0dcc482b1f50af7837758ec7cc
MD5 b3b37a6e085bd169609bdf8e1a356250
BLAKE2b-256 a2468989c766d1e19158548420eb9bfdb06eb1b8189250c1f810c0c2f9a0dc2f

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 798.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 bb203121d5b2ef953adb92cd4a6b2c59c258abfbf2d266df857ea0dc3d844ee8
MD5 e0cec7e32d0a34202d3bb3068ceba63d
BLAKE2b-256 d9649d1dd28d597531a186ddd48baf2aeae037808dd9930004d73921b9b64f25

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fd38706736976f2d6c6b3895d7a49e07a0775d1c52abaa7d7738e35a99cec424
MD5 5da1c11eeefcf9c1bdd2e8b19f64334c
BLAKE2b-256 585750c9a168a6d0a8fc5c2cf8962042bab1782d7508c899f51210ec324b5112

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 09c9b83facd133a80baa09f372ae820a1a913b414380b99a599a76e1eb273065
MD5 9198ca32cb06c402554ebf9a2eaf9948
BLAKE2b-256 bfb78accabb6f0c8648283feb9b02a3438c644b931a4eb8dbe19b673a01d4ba7

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 87c3e16ca215e2abb77f2d4cefbb198a6367c39191cef62e3551300fa33bf14b
MD5 c1f75de3092aae1ced5c4add8a782c05
BLAKE2b-256 74c76e7115128e8a6ab83cc2b05e11fe5cb57c8a358a67aee794ac69cf82fd5b

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3e9c658a87d12f343310bfa02cd553e87306b6879042dbef57c17aa11370f84b
MD5 92852a54caccfe3d2b572cb5d8e8a360
BLAKE2b-256 0af0175e6465d59ce35d7154e21e2e25f13e8603cf56ba6658a98f35e9b36bb0

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 917.2 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 289e5eb5c2df3f192bc527e73acdb79fdae72ea4cbc7a29e0de236c6c0ba2b1f
MD5 17aad80cc96fbdee1e2b1df9eb95503a
BLAKE2b-256 1250d76569de638a71ae0b6bb61741b8e01b0d1f3776c95a2a41b4be0cce87eb

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 898.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b96fc73200ee37e90e6b060a481ddcb44a15e276317445220e2237013cbca820
MD5 718b378cf82072c99f2ef11ca87ec5f3
BLAKE2b-256 aa59be7465a06a10cc8dd54a475a5dcf3dc0a5a97f7420343a57f877e47771bd

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 797.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ab0f17afcf988eea202e08fdee5134a88e337f19eb2b446b180a5cac7738a51e
MD5 0308007b15a588b6f94fee468ee2dfe3
BLAKE2b-256 8f10a846b8d6bdc1c067dd617fbbdc44041549e35247b98061ef94bc9c01eb8a

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 51fcc7089bad92b0bc4c248efff1a09b6acb55cecaf5a824ebe14da73a05a521
MD5 de85678856af99e636ef40d7287c154b
BLAKE2b-256 76617ca6dd6c02bb2101d8871bdc08c19d3af177a86a5fd1b7bbb589a167bbb6

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 20cdfc7c081f0ba3aefdb82ffb51bc0d4eb3e1402285c40d9402a3c294115ebd
MD5 e69b89026c2d30481f6cae03c6b2db22
BLAKE2b-256 9cd90f058bada7f8127a1ee31ef3ee72ef5c7e6c51f9ce9566c72363fd6c379c

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d43c4ba97f5bfa9317e94937bf4b3ff4bc2da84ab2bfd957e5cde65e66fdca2f
MD5 be9a6142451ff1bcc5919d82599e08c0
BLAKE2b-256 978f7662e5aa5f7573290416c8073a0183b388097e27e6faa4e832a47041d134

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8d1d07246fd148fab8c527599f58962cd5a153dd2177c58540af75ce608ac927
MD5 6c752dbf5e60623869fdea4d7d66569f
BLAKE2b-256 1b21186527f89896a95be35d4e4c98afdde740fe0795977b4fb2794522f41b90

See more details on using hashes here.

File details

Details for the file econml-0.12.0b2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.12.0b2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 920.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.12.0b2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa8f8468f614a0104e6870ea4159578df0d376af529fbe7c1f177ccb0fa2e501
MD5 9b176fe746b1e1770f485c95797e5ec5
BLAKE2b-256 3f46c4db75ea3bb363ec21b829af7119bd3ba7c2f88efd583ce87f8b27a92abe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page