Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build status PyPI version PyPI wheel Supported Python versions

econml-logo EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

February 12, 2024: Release v0.15.0, see release notes here

Previous releases

November 11, 2023: Release v0.15.0b1, see release notes here

May 19, 2023: Release v0.14.1, see release notes here

November 16, 2022: Release v0.14.0, see release notes here

June 17, 2022: Release v0.13.1, see release notes here

January 31, 2022: Release v0.13.0, see release notes here

August 13, 2021: Release v0.12.0, see release notes here

August 5, 2021: Release v0.12.0b6, see release notes here

August 3, 2021: Release v0.12.0b5, see release notes here

July 9, 2021: Release v0.12.0b4, see release notes here

June 25, 2021: Release v0.12.0b3, see release notes here

June 18, 2021: Release v0.12.0b2, see release notes here

June 7, 2021: Release v0.12.0b1, see release notes here

May 18, 2021: Release v0.11.1, see release notes here

May 8, 2021: Release v0.11.0, see release notes here

March 22, 2021: Release v0.10.0, see release notes here

March 11, 2021: Release v0.9.2, see release notes here

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Dynamic Double Machine Learning (click to expand)
from econml.panel.dml import DynamicDML
# Use defaults
est = DynamicDML()
# Or specify hyperparameters
est = DynamicDML(model_y=LassoCV(cv=3), 
                 model_t=LassoCV(cv=3), 
                 cv=3)
est.fit(Y, T, X=X, W=None, groups=groups, inference="auto")
# Effects
treatment_effects = est.effect(X_test)
# Confidence intervals
lb, ub = est.effect_interval(X_test, alpha=0.05)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Double Machine Learning with Instrumental Variables (click to expand)
  • Orthogonal instrumental variable learner
from econml.iv.dml import OrthoIV

est = OrthoIV(projection=False, 
              discrete_treatment=True, 
              discrete_instrument=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
  • Nonparametric double machine learning with instrumental variable
from econml.iv.dml import NonParamDMLIV

est = NonParamDMLIV(projection=False, 
                    discrete_treatment=True, 
                    discrete_instrument=True)
est.fit(Y, T, Z=Z, X=X, W=W) # no analytical confidence interval available
treatment_effects = est.effect(X_test)
Doubly Robust Machine Learning with Instrumental Variables (click to expand)
  • Linear final stage
from econml.iv.dr import LinearDRIV

est = LinearDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
  • Sparse linear final stage
from econml.iv.dr import SparseLinearDRIV

est = SparseLinearDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Debiased lasso confidence intervals
  • Nonparametric final stage
from econml.iv.dr import ForestDRIV

est = ForestDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05) 
  • Linear intent-to-treat (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearIntentToTreatDRIV(model_y_xw=GradientBoostingRegressor(),
                              model_t_xwz=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import RScorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             cv=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), cv=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, cv=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             cv=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

Policy Learning

You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect.

Doubly Robust Policy Learning (click to expand)
from econml.policy import DRPolicyTree, DRPolicyForest
from sklearn.ensemble import RandomForestRegressor

# fit a single binary decision tree policy
policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the binary decision tree
plt.figure(figsize=(10,5))
policy.plot()
# get feature importances
importances = policy.feature_importances_

# fit a binary decision forest
policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the first tree in the ensemble
plt.figure(figsize=(10,5))
policy.plot(0)
# get feature importances
importances = policy.feature_importances_

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run pip install -e . to get started (but depending on what you're doing you might want to install with extras instead, like pip install -e .[plt] if you want to use matplotlib integration, or you can use pip install -e .[all] to include all extras).

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use pip install pytest-runner followed by python setup.py pytest.

We have added pytest marks to some tests to make it easier to run a subset, and you can set the PYTEST_ADDOPTS environment variable to take advantage of this. For instance, you can set it to -m "not (notebook or automl)" to skip notebook and automl tests that have some additional dependencies.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Release process

We use GitHub Actions to build and publish the package and documentation. To create a new release, an admin should perform the following steps:

  1. Update the version number in econml/_version.py and add a mention of the new version in the news section of this file and commit the changes.
  2. Manually run the publish_package.yml workflow to build and publish the package to PyPI.
  3. Manually run the publish_docs.yml workflow to build and publish the documentation.
  4. Under https://github.com/py-why/EconML/releases, create a new release with a corresponding tag, and update the release notes.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/py-why/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/py-why/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. We use the DCO bot to enforce a Developer Certificate of Origin which requires users to sign-off on their commits. This is a simple way to certify that you wrote or otherwise have the right to submit the code you are contributing to the project. Git provides a -s command line option to include this automatically when you commit via git commit.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the PyWhy Code of Conduct.

Community

pywhy-logo

EconML is a part of PyWhy, an organization with a mission to build an open-source ecosystem for causal machine learning.

PyWhy also has a Discord, which serves as a space for like-minded casual machine learning researchers and practitioners of all experience levels to come together to ask and answer questions, discuss new features, and share ideas.

We invite you to join us at regular office hours and community calls in the Discord.

References

Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1, 133-161, 2021.

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika 108.2, 299-319, 2021.

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019. (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019. (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Dudik, M., Erhan, D., Langford, J., & Li, L. Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511, 2014.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.15.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

econml-0.15.0-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

econml-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

econml-0.15.0-cp312-cp312-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

econml-0.15.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

econml-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

econml-0.15.0-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

econml-0.15.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

econml-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

econml-0.15.0-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

econml-0.15.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

econml-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

econml-0.15.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

econml-0.15.0-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

econml-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file econml-0.15.0.tar.gz.

File metadata

  • Download URL: econml-0.15.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for econml-0.15.0.tar.gz
Algorithm Hash digest
SHA256 de7a168133d6a92fe967fce79172bdc9c298de9b603afa0fb868dc1797323aff
MD5 038bad2115b9d585fc9ef996a353ca93
BLAKE2b-256 d76489972edafb6c0011f6256581da6b5e324372d4e451f041092a7b77676126

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for econml-0.15.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 43561171129ac9022f54f437ae527fc5c0ee3b3aa7b77e634bacb455a5363803
MD5 75b7ec3d3142653eb93f241a96a6c4d5
BLAKE2b-256 0c35ca8eb97360201a948cfd02ced78fb1fe9cb16117c46fa5ee45f26dea9923

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5883aa2d559004dbacc643a297c8da10107b1f857b6dc6c55211288580226e6
MD5 b082b192f9875ba205f5ef5c1fceb115
BLAKE2b-256 bd32d422458f7246e0c8279a45cc9210fb12cf2ad75d5a4a9adf3c5fd8e43edb

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 37ade505762083f702e53cbaf7ba0d13dc974d5cdef5f470f55e5f9468b2b795
MD5 d7297f2ead355fb5f2556e18fd9d0e5e
BLAKE2b-256 daf2617f562c6ed3d6b8f3b90322eb279c2d20642e116372b344216da3f9347d

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for econml-0.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 11b3c1ea56ddeb714203a0e7f784b45d4dd9175d0e19fe7076c2eb3cfa185af7
MD5 aac78a678c217a294d6a38bbdf8927e0
BLAKE2b-256 ee1edc9000374716192e925b2b1ea49cbaba2ac712bcc0b9b8d8449bf50ea4af

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d1e673330515080c640b6330bbbb4180e743c705f6ba5a37ae0b0aec1ead109
MD5 3f2903946a58b9383181299c15d23d8a
BLAKE2b-256 e3c098c46a9568e183f22cf9456bad7bf2cad6e02a3a6a28d86250b91fdfa008

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8b85b1519ec7db45c222f25aca21da9fa8f4c50df144b05e92b538bd0088f21
MD5 97f1627bd4d390fd8720f51df9eb27d7
BLAKE2b-256 829ef6cbc1553492c0b926a2398fdf757a42035b467fb78d8079f049322bec8d

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for econml-0.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6fed9349ff6b3e58c8983f94d2b184dd59e142d1da20ead6bcddf52389b73a71
MD5 03de7263c4a3999af9c7f844b2ef4419
BLAKE2b-256 3d4a644670301ae95b506c9cdf9c932de5579eb299524650c7e3ae6b4867b0c1

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e143aedb4ab6b7d73592d643d98592e2c8c5df9c8145635248263c300fdc8628
MD5 40abe5aa4ffb410c9660b2ad57e10533
BLAKE2b-256 7fb1b4a47f61c410d5f50c678d64b0826f0cdcdfbc70dbc82f1e0a031ab55add

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61881408adf926955b87b8528cdb5051b81e497d8683ee8dd383ebf96df1593e
MD5 41b1c66123e7716065d05d0f7d007432
BLAKE2b-256 044238841d57f0efa03ef5a5052bfd14143fbc5b7aa7763c9a0d39acb3e32f26

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for econml-0.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 85ae50e33b46a0bac8e2cfb8692b553c913efd764346ce14781a808b24897575
MD5 700671ad45d37f2568121d5a12b72c3b
BLAKE2b-256 9a6a984643e3ae1adb8ad5f2fb9e9555097b5a4986a7ddc54896b8621c91df85

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ced1ba22c6cddb6da072e7873e0b215ebd8492f51b9fc153463903f6c961fab
MD5 b7f4790ad59eb926a731cb0a9b57b47e
BLAKE2b-256 7d03f03818b20cbc178535ad13d124ce57fcfcfd2bb5f8b1a074f71d2f3aab0a

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cde9ceef1558e55ca8a914a57cc465b525aaa1f4acbac9f8498f4f2d9f35a964
MD5 751ad8a239e5e99bdb58c42ee0087022
BLAKE2b-256 a240083ef941b06dce757f3eb43fa79399684ba32409c2edf1a97a3d1b2387c1

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for econml-0.15.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b0e773b77edfb591fdf64fe24b1381c8872b6ba72e5f78bfeb39b91e2ee4b64b
MD5 bcdbd897a6d55bfe78ecb337e62e1bdc
BLAKE2b-256 602856362fc4eb64e38bef3a547ddaca96dd2fb27af2d6d91b1e7c9aaa5c867e

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3444e8d54fd4829edd8acdf7b0dde69ed4c963c4e495f1260735ea27bbf86123
MD5 2b072240fe8d4a1118a4559c9c62c1e9
BLAKE2b-256 e1bcad4e91786ff5b452aea60eb169a0192c50284017848067b7b1fa381dfaf5

See more details on using hashes here.

File details

Details for the file econml-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85d877e9af95500bfc176a5a7b426ffce88e8be66cf258fba7533799f6f59f28
MD5 61e2f3066200574cf8defde872ea976c
BLAKE2b-256 1703aa0b38c50f61736633df10e4b19dc8371ca7b3a6417b46662d319034536c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page