Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build Status PyPI version PyPI wheel Supported Python versions

EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

February 20, 2021: Release v0.9.0, see release notes here

Previous releases

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Instrumental Variables (click to expand)
  • Intent to Treat Doubly Robust Learner (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from sklearn.linear_model import LinearRegression

est = LinearIntentToTreatDRIV(model_Y_X=GradientBoostingRegressor(),
                              model_T_XZ=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X) # OLS inference by default
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import Rscorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             linear_first_stages=False, n_splits=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), n_splits=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, n_splits=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             linear_first_stages=False, n_splits=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, n_splits=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run python setup.py develop to get started.

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use python setup.py pytest.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Microsoft Research. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Microsoft Research},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/microsoft/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

References

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2020

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.9.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

econml-0.9.0-cp38-cp38-win_amd64.whl (802.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.9.0-cp38-cp38-win32.whl (713.4 kB view details)

Uploaded CPython 3.8 Windows x86

econml-0.9.0-cp38-cp38-manylinux2010_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

econml-0.9.0-cp38-cp38-manylinux2010_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

econml-0.9.0-cp38-cp38-manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8

econml-0.9.0-cp38-cp38-manylinux1_i686.whl (2.8 MB view details)

Uploaded CPython 3.8

econml-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl (810.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

econml-0.9.0-cp37-cp37m-win_amd64.whl (793.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

econml-0.9.0-cp37-cp37m-win32.whl (705.3 kB view details)

Uploaded CPython 3.7m Windows x86

econml-0.9.0-cp37-cp37m-manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

econml-0.9.0-cp37-cp37m-manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

econml-0.9.0-cp37-cp37m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m

econml-0.9.0-cp37-cp37m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m

econml-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (811.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

econml-0.9.0-cp36-cp36m-win_amd64.whl (793.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

econml-0.9.0-cp36-cp36m-win32.whl (705.2 kB view details)

Uploaded CPython 3.6m Windows x86

econml-0.9.0-cp36-cp36m-manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

econml-0.9.0-cp36-cp36m-manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

econml-0.9.0-cp36-cp36m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m

econml-0.9.0-cp36-cp36m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m

econml-0.9.0-cp36-cp36m-macosx_10_9_x86_64.whl (814.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file econml-0.9.0.tar.gz.

File metadata

  • Download URL: econml-0.9.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0.tar.gz
Algorithm Hash digest
SHA256 9e4fa61b5ef4bcd49138ed98ebedb1ac900ee18b679a393859fc7050f2846e2a
MD5 00e594642ce0aa124ecf47632deea7ae
BLAKE2b-256 3a8f7eea3f194fef44a6b80de2dd103f3e41a5ff0c4329197accc68915f055af

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 802.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4fa0fc931344216527a1459a0d7618e324b33c452f70be629052151a4dd01192
MD5 eb65f584d2745c18d50310c1f3fecaec
BLAKE2b-256 b337c3e1cdbb9437e4c7e7dc86702dfd80b100cb6689aac9cf3fac9990c4aef7

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 713.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0f3fe60072005660eb43de3f74cc59e33023604b42fad824816b8cdb223bbe89
MD5 d0166f30ccf078fe8ed0d202b9e21e66
BLAKE2b-256 241cc41831db1e93b5c8292b596742f2d5ed2f16e4369645e50cc65e9149781d

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4615f8a6a8308997cdc9416d1089299d0f42fcb07cf941a03f5a541d8b062c38
MD5 b9e77d28423a344a725b07d3934b19f8
BLAKE2b-256 0e365d945492582fcd75fdee09f81789439b926e2a3fb97b8ec8a0d42ac74f85

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 99ced3d5383cc3980db93ac8b6fc44897918e5dcd8b51ef19d4e24ce570e4562
MD5 8556cd9a94cb0a032d63b204f4f01e26
BLAKE2b-256 1638d293cdd117d7c8d81ea32507e143762921440c378aaeb18b11d21de4f100

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a53e2c1d60b51981c4dcaac1e4ece12dcbf59a02e5c107cc5fa0c10dcc959003
MD5 2b75529fece29b1a84e066d42904a018
BLAKE2b-256 a4b9865626176842646dfd3d5a2f460df6d083ea22238e76d66ad93dbcdc240f

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fc513a80fdf27ab4066228a05eca9087f3f9baf3454820ac199d1e2ef8d1f4b7
MD5 f544eec472b20ee0554e3450f488e061
BLAKE2b-256 0a41939cc588df62f0cd068bd463b4f1f2553f496d5183c865421b51a9228c1d

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 810.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8d252ce1be4e6344e338fa9ccf3fd9d8a3f3c39140265e55942e41772e2d392
MD5 7feb45037fe5995437dfefe5785928f7
BLAKE2b-256 2b78e2e36e04b18d8cdfa1aeaad849a9a89e55d81df71a6834d3739e4d764979

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 793.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b498eea6c1da9dae7c2c48c4d0472762ae32decc0c9854ec9842b710a48a8a71
MD5 1e7e1c817bf6a6b99551ac2f700f477e
BLAKE2b-256 d0cc5edd2e3b07ec0ea428f59b3e274f7f9727621991db07ffbf6cb7afebb7d1

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 705.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 65094272314ffee83c7f86856575843ab2c1be3d2adf4ac36a491451e6b46ca1
MD5 de25c4335eac21fba9edd6afc80eec06
BLAKE2b-256 48e6ecaab2f465ffa5dc5d1b29f24cd9e729251ec814921346fa0071816e24a2

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b0f516bd94c0e532282ac76f830e8acb0302e1d1a24a170ea488346ec008d8cc
MD5 b9200c53a4c7f9379404cc515427d27b
BLAKE2b-256 35fc6c8aef63d68d6695e6aba5307b98ffb31390e1e4d22a0fec6704b61f40a9

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0144b1ba8e08e4432e8f28bef6f58d6c1ee665144ad752df34380cc97ed09998
MD5 194c3136662f3e44cf750b6c8ef81331
BLAKE2b-256 aafc93a0343d5e410b99c3c08c15e3d8180bad88626d34a3c9a44296fea54414

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b8cb6f72bf714b3a0556b09ff2be536db53891195c2c30936eba3419e7c6f051
MD5 aacaf2f249401a8f202f4167d6f0aa74
BLAKE2b-256 2ce9f552d7b1e04fb7704fd1eea9001201b22d54435adb129915774370f49550

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 27951aae8ee465f9323afeadcacfb680f2140e2efa3fbf58dc8c7f092c50f996
MD5 5dd2aaf43540f8e252efd7c1db1302d2
BLAKE2b-256 4b9b5bc8f818ed150ca70733965d51e17430c07a0a840f12d311d86d81b63793

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 811.2 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a61508aa584d8ea230e889c2a5338362a6e6eda35012059605854b21e81c682a
MD5 50525045e8243f6655135260eee93013
BLAKE2b-256 5e893af4a76f9d8c2173fc46233a5db24a7edb30aebd3aedb6fc1c5751e1f242

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 793.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d5909ca1cdee71471049acdbe5d787f51fc54b14832314095175137059186b91
MD5 379f864733cf60a3022582a905a48e1a
BLAKE2b-256 ee163d0b589078851027c89cf93ad32efcf045192d6fb12c21d48475e768b95f

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 705.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d0b42396e1ff34eba82ccd7ede3610b123cbcd7c4aae3b0ec73fedff4a263969
MD5 705c80e85319e6cac35b57cb8bcb1315
BLAKE2b-256 21c7da89ff6da7e446db64c4bf621d2ea88b8c8db49f40ba5407d6444c3c3d13

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eb8ae521a5a333679c70b7039dfb7df45ddc32bf28b053ea693634630605648c
MD5 43ad5b076a47470f4863cc0cb43cddfd
BLAKE2b-256 263306a79d567bcd72e5a6fb3499b3d3a771b65704ff1c2a1a826212ce2a4f1c

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a72a9cc0db146a264fc489b0338dd9e665f863fb93394340813c5ccb18f9095c
MD5 4db806cb541c89671ea413dc0dd3da11
BLAKE2b-256 5f967237e04b7fafec2986cb9cfdd82136450e86064eb95929081acae6f4ffeb

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bb910787e835957f236665a7036fda59c3458dc8f78697cd0892f1b18019a1d2
MD5 f30f47095233e49b93a3af7ae974318c
BLAKE2b-256 48f363f3793108f00d3a7b961a60f1b8fb91ae26e741c157c1e0d22becc49542

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 94649f93737db0dc825c8615fb410fcd7717da294f272cf4dd1a524768f87655
MD5 5c74023d6df710c51c07c449ead2f5c6
BLAKE2b-256 112f3b2dbcf266c2d7b32aec3fc7d47c526619bf4abb85c485186e2b20a31b00

See more details on using hashes here.

File details

Details for the file econml-0.9.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 814.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.6.9

File hashes

Hashes for econml-0.9.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 beee75cafb41e99176e65360ee3ccc3fdee509dc485abb475768a9b2b76be11b
MD5 dc03fc46bd2458a3752ae382badd2e45
BLAKE2b-256 eac6d09d7f0de6f1e9e685b5e9aaa32f597d1ec8e9caad1ec5ab982dee1b2786

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page