Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build Status PyPI version PyPI wheel Supported Python versions

EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

January 20, 2021: Release v0.9.0b1, see release notes here

Previous releases

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Instrumental Variables (click to expand)
  • Intent to Treat Doubly Robust Learner (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from sklearn.linear_model import LinearRegression

est = LinearIntentToTreatDRIV(model_Y_X=GradientBoostingRegressor(),
                              model_T_XZ=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X) # OLS inference by default
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import Rscorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             linear_first_stages=False, n_splits=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), n_splits=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, n_splits=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             linear_first_stages=False, n_splits=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, n_splits=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run python setup.py develop to get started.

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use python setup.py pytest.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Microsoft Research. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Microsoft Research},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/microsoft/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

References

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2020

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.9.0b1.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

econml-0.9.0b1-cp38-cp38-win_amd64.whl (877.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.9.0b1-cp38-cp38-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8

econml-0.9.0b1-cp38-cp38-manylinux1_i686.whl (2.9 MB view details)

Uploaded CPython 3.8

econml-0.9.0b1-cp38-cp38-macosx_10_14_x86_64.whl (903.7 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

econml-0.9.0b1-cp37-cp37m-win_amd64.whl (868.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

econml-0.9.0b1-cp37-cp37m-manylinux1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m

econml-0.9.0b1-cp37-cp37m-manylinux1_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m

econml-0.9.0b1-cp37-cp37m-macosx_10_14_x86_64.whl (904.8 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

econml-0.9.0b1-cp36-cp36m-win_amd64.whl (872.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

econml-0.9.0b1-cp36-cp36m-manylinux1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m

econml-0.9.0b1-cp36-cp36m-manylinux1_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m

econml-0.9.0b1-cp36-cp36m-macosx_10_14_x86_64.whl (894.1 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file econml-0.9.0b1.tar.gz.

File metadata

  • Download URL: econml-0.9.0b1.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1.tar.gz
Algorithm Hash digest
SHA256 379fb3f8a186da14d29ef9bc4d1c7b480d5d1d5a4fc4ce63dd83b45b202b75c7
MD5 ff4c5d4fad38910e401bd7cbc798e2fc
BLAKE2b-256 370a39f4ab7032228e2af0b85ce632c996d471cb5d4dd6626d4cda80069efa41

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 877.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 546bb0b2b04bfb4a86d03d0947125830dedba67c18e8a49caaa7bb9616b78d10
MD5 c69553ed0f470f6a14d8403b2016c85f
BLAKE2b-256 8bff3fc18e547426f1c3f389c63dcfbbb1c310d2c78096262bff890f5d9cd565

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a3fcd3758496485829bc2866b393e4d5e4d3a61bc41d77231de9ee203994b29c
MD5 74511ebf87a0c3561004c217eb9c75ef
BLAKE2b-256 8d25f690e3aca03000a474b793868cb3cf5f9fe31acc8b4a5cc8e8cebcd3dca3

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a5a70f1de003b738839fc2ae8798215016f3a7f2bd8a1a02521a2caec15510dd
MD5 21fa1dfec97de8922b9d8526a230536b
BLAKE2b-256 66716299994cf1d6efdfd121cbcd2917a958874e1e24d91b526783c3211f8f57

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 903.7 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5f0bcb8db54e8c4f3defa5569273f4e51d2ac48c48e70bc0577bff07e8377d42
MD5 f4ccc1e9bb92a0f66e2f6bbc4a1f0bd4
BLAKE2b-256 2efe2a34b8a9b661eb648833240803f6616895bdc09e2665b6a4314348ae989e

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 868.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 070c8fee2d004de723fbee0f04394185f2f2de6a487599ac6830727096d09f88
MD5 f7ac04c05a4a87fa3723fb6674cb0645
BLAKE2b-256 9d180c777d1d18217df426bf636504111a58a0529e5c91b911e7e0ebd50b59fb

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2a85a7f823b90decb5365b62477b71873d0ac0313e75a0a58ab620678d07d25d
MD5 06fdb027f17aa0ebabb97d4cd029cfc7
BLAKE2b-256 6723af4152ad781f5732645de63d924eb1702a0472f53458227b7abf3fdb2576

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c47a39633a7949a4377ea0dd737b9db0dfbbac0fffec735bdcdb7f4d6c326b79
MD5 fea67aa3879557615e651942704aa485
BLAKE2b-256 2c7cef476327cc45dc1292a5455bd8e18275aa80588050fafb73ea4f031a3d73

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 904.8 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6402464b94fc8bb0202556e6040a20e07a33f13405e7e6c0341bffeee281ebf2
MD5 e1fb709e3defdddb9fc3e0d02667cd52
BLAKE2b-256 5a68b6d57aa82fe11839a4a6ee41155edda8fc4e1b9ecb72fd9ec2cf81821318

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 872.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f35e8b6f06b5d1f94ad5af40bb64d780f35c97f876622f8c2775c05764dfa5af
MD5 4d3c61199d0a07aee3bbcf65df6625d1
BLAKE2b-256 a55e37c43a12e80e6143eb7da5e97f34c07cc04172e90747585d36324d3a5f8b

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 352c105776460b01fd9d65e6c41917357ba261632f33bd2f4a636e1d6198eb9b
MD5 f6ab8e75d64b65d1ef3723cc9e5333d0
BLAKE2b-256 92e35a6b63fec26bb43ab9111855c26f8ce851a84784d2285365070ad5f45ab1

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 44aa7c295dbaef64d1958cf8e93040c8077fac8bef24a41c45835d0442eb3e41
MD5 89d327bf5a22161ba97206ba8a9c1731
BLAKE2b-256 b6326b85d923a4768bcf47ac5408fd8a53e35486f193f4458249dea08c8983ae

See more details on using hashes here.

File details

Details for the file econml-0.9.0b1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: econml-0.9.0b1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 894.1 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.0b1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0607615fc363d84c95d4e36934082c3b5a847db1aa0772b6e9f3ac2b540a1aa2
MD5 bfae92e2a417db292a891595de7e527f
BLAKE2b-256 e2f0ec94f99e456ab3641fa053656a14160f9b9fdd9fc267253afe25f1958f92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page