Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build Status PyPI version PyPI wheel Supported Python versions

EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

March 11, 2021: Release v0.9.2, see release notes here

Previous releases

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Instrumental Variables (click to expand)
  • Intent to Treat Doubly Robust Learner (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from sklearn.linear_model import LinearRegression

est = LinearIntentToTreatDRIV(model_Y_X=GradientBoostingRegressor(),
                              model_T_XZ=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X) # OLS inference by default
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import Rscorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             linear_first_stages=False, n_splits=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), n_splits=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, n_splits=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             linear_first_stages=False, n_splits=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, n_splits=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run python setup.py develop to get started.

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use python setup.py pytest.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Microsoft Research. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Microsoft Research},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/microsoft/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

References

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2020

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.9.2.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

econml-0.9.2-cp38-cp38-win_amd64.whl (807.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.9.2-cp38-cp38-win32.whl (718.4 kB view details)

Uploaded CPython 3.8 Windows x86

econml-0.9.2-cp38-cp38-manylinux2010_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

econml-0.9.2-cp38-cp38-manylinux2010_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

econml-0.9.2-cp38-cp38-manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8

econml-0.9.2-cp38-cp38-manylinux1_i686.whl (2.8 MB view details)

Uploaded CPython 3.8

econml-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl (815.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

econml-0.9.2-cp37-cp37m-win_amd64.whl (799.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

econml-0.9.2-cp37-cp37m-win32.whl (710.4 kB view details)

Uploaded CPython 3.7m Windows x86

econml-0.9.2-cp37-cp37m-manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

econml-0.9.2-cp37-cp37m-manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

econml-0.9.2-cp37-cp37m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m

econml-0.9.2-cp37-cp37m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m

econml-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl (816.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

econml-0.9.2-cp36-cp36m-win_amd64.whl (798.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

econml-0.9.2-cp36-cp36m-win32.whl (710.3 kB view details)

Uploaded CPython 3.6m Windows x86

econml-0.9.2-cp36-cp36m-manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

econml-0.9.2-cp36-cp36m-manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

econml-0.9.2-cp36-cp36m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m

econml-0.9.2-cp36-cp36m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m

econml-0.9.2-cp36-cp36m-macosx_10_9_x86_64.whl (819.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file econml-0.9.2.tar.gz.

File metadata

  • Download URL: econml-0.9.2.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2.tar.gz
Algorithm Hash digest
SHA256 2e57ab4eb710ca2d5e811fc6a5efb66cf4dd649f0d63cb3c5700ebe2150e6f05
MD5 937db4a3fc0c5eefa8cee3a5ef997bcf
BLAKE2b-256 23592b3cff1c6afa257452c7d3991260a32931bea9f3f2e146b4c1e26d1f012b

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 807.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5158d4e1e1d21543a7f8381ae07ba628b795315112c6e8b5371ad28ce9c43986
MD5 25dd0a73d14a7242509d072318e96bbe
BLAKE2b-256 1f371cbc59bfdbcd3a0cead1e9242fc53c0da5ebed858778727e165d8bf6c9eb

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 718.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 77db1146eb579adba197fff7f6e5b13f176006e35b2b3f9f95cce5c5b189146d
MD5 ea12341efed3aea67b6ea5e4a77351fb
BLAKE2b-256 508fb9d2000cb4f82ab141f30725b4db33f6361b0f2552bfed12c859731a652a

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9d737da8005d32a5d91e9f392a6825458c2b5ac28c470ca3245c4bd8cfbea5d4
MD5 9b1967a79b4fcc9f5384e0b90a627e46
BLAKE2b-256 ec13b696f90df9fd169f7b9248ef31c198951290e022057aa5af8d2388c615dd

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3d8cb383a24f94fd106a3f8fe829addbb537cb734a239f37b19658c74e31b458
MD5 cb6b68cdd27dac1a8779c4f76522b9aa
BLAKE2b-256 ecd111c8fab33fe49d4c747d4220a6ff35eda63aa0b41e3e7bd7c7d4d472fc20

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3c91a3d7112e26ae6310c4f3fe78c2b7934d64b5a5b871c57d7a80912a6f95f1
MD5 ad2f795d55c731c96e64db33cb35daff
BLAKE2b-256 3c29297e0c7f0cf8769628304770f421c510da49a8d2bbea70fa6322ffaf4705

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c4c9ff7b2325374b585856daeac51cea707c5abc854858b5456ea980f651013f
MD5 e6d584a980d39a6dc4252d38e5c4eb55
BLAKE2b-256 146c6c6a80a1c22fa8c1feba478c7fdc346b5d14b7d6f8bb2e0aabbf49d10f4d

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 815.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae3509fd79f994dd2ab5bb0ebf99a3a9c319b64348784ad8b0e7c6d8b8e11387
MD5 30ded808f260db2aa67e472c6e344eb0
BLAKE2b-256 7e6654b424a8499b2bd85b0c0ae8b5ffa960cb61929a93a28fb833d3653cd2b8

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 799.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7954a2fce8fa77ef800d8035db21b0278c2bfe0a64b8ca84aca32dfe0cfa0993
MD5 669a320a7b46f4b1dd7c5e89417da882
BLAKE2b-256 44760a7b238da4ba71b0651365a88075d0a602c661ecb537609323ae936955b3

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 710.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f38d30ae3cc949e784e9a087a0dfb0a5cebf463a274610a5e40ab1b9d64ffa58
MD5 a558f7d2fb2deb5a7668644aa48e2bf9
BLAKE2b-256 2e8c4cb88644e158b9870728899ac6b39221607cf08583af1dcae20522274caa

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 88430e8d3face2f696891f4f4feae73c259cbfccb91c5627faa50097d90d7985
MD5 f3f2736a632510900bf25340ae3e4b0f
BLAKE2b-256 918af5b3ac1524f52ca5359315a90805c4c473d9db35a2037b205567e29fedeb

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e4ab27ebc9a50a18a1c4aed7b0dc87952427ff8ca114372efd984af4022b82ea
MD5 eaafa74c60288d379686fecebd479936
BLAKE2b-256 f53d0c2a70445c6836caf84ee45db8a6528ad19a4c4b3872039aa49c6b1b7ce2

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 709d813b6904bfe8a7b3b0316c5faec96df66079e0e0588f184f71af962c7f2f
MD5 b04a742916460030c26b2a342a4d325e
BLAKE2b-256 6779e36c5df5c7d6051d458dba65c3c7c5af7d69e9c125300a65c8c0d1fb5345

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3cc449c054ca9f729248baf4bc443aff5911385093ff7d7b806aa8cea459d109
MD5 20bea697d4bcfad9fe5f227e0a419774
BLAKE2b-256 ea5a866f4104a669b948c0a99f52f230f70d67d1bb1d4eb5a4f6dc4061606e13

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 816.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27caca34860ae706ac9591fb618217a0690e0648b5ac839b2aad381bea0ad337
MD5 cdffc76edb0050f642f3cace996904f7
BLAKE2b-256 0375a7c7172d1b2999144d638de3e0e49db133985ce416d9f2ac7748d13b1be6

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 798.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e2b2572e842be9f284162d709c5ff6ba09555ba9b20ae3d42005122836aa99f6
MD5 ac74dfb30f9084f45e447dbf489a24c8
BLAKE2b-256 50f398c5efaf42e61643dcc561e40114806b62481c417b80f448380d0e4bf30b

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 710.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9d3c216fe87eefbdfeb9d7e5a1a3805696bd438e22b65f99ac70cc25eac92200
MD5 0d79fa216a2b38ca6f9fbefcbe327ef6
BLAKE2b-256 f24ae118bedd8ab124c8b1038a5878aabc2fcc8b25c38f329ef6227c85cd767f

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c6c90168f05d9f23b5c35e15f9e646e026c43c51421b17a571401e3b506ba84
MD5 fa7b3ddb3985819f7839087a9fa7bae8
BLAKE2b-256 5a3fb8e36971e3c49b3f545ebaf0e978d111c7d1c99faf218eb15df805b1d660

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3162d6107fee1760e6f48abf454e0f957c87cfe02ab326b20bcf50b280b9580b
MD5 141eb7ec0149290aa6a4d0ca88b4a7f3
BLAKE2b-256 ff124ca58052a36d30a30ddb6295197d5a35e2430095d0f3b6d4e51a62d95a63

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 87d02a1f2a0b97e15107a825d2f1a1f1954a42b30b70148bae023f293d034a3c
MD5 37bbe756a352267a1530db83095e1701
BLAKE2b-256 1c3252264f85190a57888e6f53d2c50ed015300421771904b94ce093e330476f

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e262ddaf62dbfdde90017c681f1a99ef2413e42de6be7b730a48f0e64d404494
MD5 a2e82d5a5f5d82b3f7aea5deb2495433
BLAKE2b-256 90e8a72210c703fed88c020fd771a87a8004050037004fa20ecc90c6614e7e87

See more details on using hashes here.

File details

Details for the file econml-0.9.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.9.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 819.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.6

File hashes

Hashes for econml-0.9.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf5d59d16ff3ff69468c1e840c79816aef233ce5ab7e7062730002199036b498
MD5 0de84cf8cc36bd6b9ed3b01440a1ee62
BLAKE2b-256 b7cc2a465204af78221672e36305af52d281bad65c0b514eb66e68231f88e0b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page