Skip to main content

Toolset to make EDA easier!

Project description

EDAhelper

Documentation Status codecov github workflow

Tools to make EDA easier!

About

This package is aimed at making the EDA process more effective. Basically, we found there were tons of repetitive work when getting a glimpse of the data set. To stop wasting time in repeating procedures, our team came up with the idea to develop a toolkit that includes the following functions:

  1. Clean the data and replace missing values by using the method preferred.
  2. Provide the description of the data such as the distribution of each column of the data.
  3. Give the correlation plot between different numeric columns automatically.
  4. Combine the plots and make them suitable for the report.

Contributors

  • Rowan Sivanandam
  • Steven Leung
  • Vera Cui
  • Jennifer Hoang

Feature specifications

  1. preprocess(path, method=None, fill_value=None, read_func=pd.read_csv, **kwarg) :
    The function is to preprocess data in txt or csv by dealing with missing values. There are 5 imputation methods provided (None, 'most_frequent', 'mean', 'median', 'constant'). Finally, it will return the processed data as pandas.DataFrame.
  2. column_stats(data, column1, column2 = None, column3 = None, column4 = None) :
    The function is to obtain summary statistics of column(s) including count, mean, median, mode, Q1, Q3, variance, standard deviation, correlation. Finally, it will return summary table detailing all statistics and correlations between chosen columns.
  3. plot_histogram(data, columns=["all"], num_bins=30): :
    The function is to create histograms for numerical features within a dataframe using Altair. Finally, it will return an Altair plot for each specified continuous feature.
  4. numeric_plots(df) :
    The function takes a dataframes and plot the possible pairs of the numeric columns using Altair, creating a matrix of correlation plots.

Related projects

Surely, EDA is not a new topic to data scientists. There are quite a few packages doing similar work on PyPI. However, most of them only include limited functions like just providing descriptive statistics. Our proposal is more of a one-in-all toolkit for EDA. Below is a list of sister-projects.

  • auto-eda : It is an automatic script that generating information in the dataset.
  • easy-eda : Exploratory Data Analysis.
  • quick-eda : Important dataframe statistics with a single command.
  • eda-report : A simple program to automate exploratory data analysis and reporting.

Installation

You can also use Git to clone the repository from GitHub to install the latest development version:

$ git clone https://github.com/UBC-MDS/EDAhelper.git
$ cd dist
$ pip install EDAhelper-3.0.0-py3-none-any.whl

or install from PyPI:

$ pip install edahelper

Usage

Example usage:

from EDAhelper import EDAhelper
EDAhelper.preprocess('file_path')
EDAhelper.column_stats(df, columns = ('Date', PctPopulation', 'CrimeRatePerPop'))
EDAhelper.plot_histogram(df, columns = ['A', 'B'])
EDAhelper.numeric_plot(df) 

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

EDAhelper was created by Rowan Sivanandam, Steven Leung, Vera Cui, Jennifer Hoang. It is licensed under the terms of the MIT license.

Credits

EDAhelper was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EDAhelper-3.1.7.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

EDAhelper-3.1.7-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file EDAhelper-3.1.7.tar.gz.

File metadata

  • Download URL: EDAhelper-3.1.7.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for EDAhelper-3.1.7.tar.gz
Algorithm Hash digest
SHA256 b08e3262b5339bb84b4706429c732464e4fdae4191bf0167aba1cd7937256f60
MD5 d5e09b4aa4f0eb3d34112a9457d3eade
BLAKE2b-256 6a5983f8309f5ebdc8fc09af98ead758dd09a523e6a8dc988bcb8389e1afe2ae

See more details on using hashes here.

File details

Details for the file EDAhelper-3.1.7-py3-none-any.whl.

File metadata

  • Download URL: EDAhelper-3.1.7-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for EDAhelper-3.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 0fd1b4bc3ec7d64b98ce7ef6768cc46182f69f3a6a1a9cbf7bc4d8434055cf14
MD5 73623c0482db4d118a54c8825e7c688a
BLAKE2b-256 6ff3eb7862254b054253d6b781bd47053bbc80656e6b14ba80fc4ee4db9d57ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page