Skip to main content

Build analytical tables for clinicedc/edc projects

Project description

pypi downloads

edc-analytics

Build analytic tables from EDC data

Read your data into a dataframe, for example an EDC screening table:

qs_screening = SubjectScreening.objects.all()
df = read_frame(qs_screening)

Convert all numerics to pandas numerics:

cols = [
    "age_in_years",
    "dia_blood_pressure_avg",
    "fbg_value",
    "hba1c_value",
    "ogtt_value",
    "sys_blood_pressure_avg",
]
df[cols] = df[cols].apply(pd.to_numeric)

Pass the dataframe to each Table class

gender_tbl = GenderTable(main_df=df)
age_tbl = AgeTable(main_df=df)
bp_table = BpTable(main_df=df)

In the Table instance,

  • data_df is the supporting dataframe

  • table_df is the dataframe to display. The table_df displays formatted data in the first 5 columns (“Characteristic”, “Statistic”, “F”, “M”, “All”). The table_df has additional columns that contain the statistics used for the statistics displayed in columns [“F”, “M”, “All”].

From above, gender_tbl.table_df is just a dataframe and can be combined with other table_df dataframes using pd.concat() to make a single table_df.

table_df = pd.concat(
    [gender_tbl.table_df, age_tbl.table_df, bp_table.table_df]
 )

Show just the first 5 columns:

table_df.iloc[:, :5]

Like any dataframe, you can export to csv:

path = "my/path/to/csv/folder/table_df.csv"
table_df.to_csv(path_or_buf=path, encoding="utf-8", index=0, sep="|")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc_analytics-0.1.3.tar.gz (27.4 kB view details)

Uploaded Source

Built Distribution

edc_analytics-0.1.3-py3-none-any.whl (31.5 kB view details)

Uploaded Python 3

File details

Details for the file edc_analytics-0.1.3.tar.gz.

File metadata

  • Download URL: edc_analytics-0.1.3.tar.gz
  • Upload date:
  • Size: 27.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for edc_analytics-0.1.3.tar.gz
Algorithm Hash digest
SHA256 1861df43a7e6f7110170c2046ae30b96e5ed450a09cab645427b5dd2c0f38f5f
MD5 efe3b6d58f5ee7f9934acd9ea221b25a
BLAKE2b-256 7446a872304e978a10b1b4e2430c88319d8afdf4200832555c64f5b9c5505518

See more details on using hashes here.

File details

Details for the file edc_analytics-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for edc_analytics-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 aa9cd1c73e160aa5ec4b0a229e43d06a40b5e7995fd93e303366c009cce190bc
MD5 ae7b5577ce15d644d0a112c4e53f1d23
BLAKE2b-256 6d5f3f78d6ce9059ecd667a238d131e498206a23132698f6d6d06dc36c5ede07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page