Skip to main content

Edc old lab classes

Project description

pypi travis coverage

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.2.18.macosx-10.13-x86_64.tar.gz (126.0 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.2.18-py3-none-any.whl (93.3 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.2.18.macosx-10.13-x86_64.tar.gz.

File metadata

File hashes

Hashes for edc-lab-0.2.18.macosx-10.13-x86_64.tar.gz
Algorithm Hash digest
SHA256 cceced4dce487c416897e21da82aa427e8733f3d805bde73a8006ccd575d81e1
MD5 87cc6f5cd49849bd115d20595d1546e9
BLAKE2b-256 a3d0e3628a78fdf4715a81a70db408f65d35d1727babe4e9081be6f7c4616d74

See more details on using hashes here.

File details

Details for the file edc_lab-0.2.18-py3-none-any.whl.

File metadata

File hashes

Hashes for edc_lab-0.2.18-py3-none-any.whl
Algorithm Hash digest
SHA256 0617a72f940d8c34841ba01ac31c5cae549b0e1cee378ad9d1e77327e0f08b44
MD5 3be258cdddab12ad77a6bcef74daef46
BLAKE2b-256 2e76f81c8a26b2e1a3620972c7281036dbbce46219f655a03fc6b8baea4825d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page