Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi travis coverage

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.2.22.macosx-10.13-x86_64.tar.gz (125.1 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.2.22-py3-none-any.whl (92.9 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.2.22.macosx-10.13-x86_64.tar.gz.

File metadata

  • Download URL: edc-lab-0.2.22.macosx-10.13-x86_64.tar.gz
  • Upload date:
  • Size: 125.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.7.0

File hashes

Hashes for edc-lab-0.2.22.macosx-10.13-x86_64.tar.gz
Algorithm Hash digest
SHA256 39d29436f3db16918d1d980a80d54bc7ffa84d6d865d84c900adaf44896cab03
MD5 78adb8f54eb07e7a3db7de8b0f46c9c9
BLAKE2b-256 2d824e3f439bea3d73bbc9ded120e4284118387eb6681d89731250f7a0ec4a00

See more details on using hashes here.

File details

Details for the file edc_lab-0.2.22-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.2.22-py3-none-any.whl
  • Upload date:
  • Size: 92.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.7.0

File hashes

Hashes for edc_lab-0.2.22-py3-none-any.whl
Algorithm Hash digest
SHA256 6d74db32f968c5dcab817648d1071a8223b5d6270d77c911c3a0f356282e78aa
MD5 8d481bc8c7fc25c15d061c95ab860556
BLAKE2b-256 d4acd3b9874ca666fc07dd0e8c5b465f37eca122ee6fb59cf1e5e4d5661ef6de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page