Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi travis coverage

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.2.23.macosx-10.13-x86_64.tar.gz (125.0 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.2.23-py3-none-any.whl (92.9 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.2.23.macosx-10.13-x86_64.tar.gz.

File metadata

  • Download URL: edc-lab-0.2.23.macosx-10.13-x86_64.tar.gz
  • Upload date:
  • Size: 125.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.7.0

File hashes

Hashes for edc-lab-0.2.23.macosx-10.13-x86_64.tar.gz
Algorithm Hash digest
SHA256 649c85b735c17fee65969bd8155b54ae6c6a9cbb784a8693ea2a0173c3bd6323
MD5 fc390fe97a98b0b4f5b52e8f2e15a9e4
BLAKE2b-256 18df9c7f48653cb81d7e10b5aee5188aaee941b36a003164eb3bd9deedc0d496

See more details on using hashes here.

File details

Details for the file edc_lab-0.2.23-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.2.23-py3-none-any.whl
  • Upload date:
  • Size: 92.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.7.0

File hashes

Hashes for edc_lab-0.2.23-py3-none-any.whl
Algorithm Hash digest
SHA256 89783aa479a50e6f48a125f17806b108ef543b08c6217e07d99f3eb247f4c747
MD5 b0725b9c20e5dd1814665da1361bc3ea
BLAKE2b-256 ad7b2d8f7be7c11026c80da9f5f3d53249d77cca6dd094c0e4907ea9e78d0495

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page