Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi travis coverage

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.2.25.macosx-10.13-x86_64.tar.gz (125.7 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.2.25-py3-none-any.whl (92.9 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.2.25.macosx-10.13-x86_64.tar.gz.

File metadata

  • Download URL: edc-lab-0.2.25.macosx-10.13-x86_64.tar.gz
  • Upload date:
  • Size: 125.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.7.0

File hashes

Hashes for edc-lab-0.2.25.macosx-10.13-x86_64.tar.gz
Algorithm Hash digest
SHA256 ba7ab2e9adfcb08bb9f6252c4904a62676bac43518fa6f1438a1cafff9acd981
MD5 923fefa14ff8fe1e057363fe55d28207
BLAKE2b-256 7e4d136cca2c7cea5932a4ad1ab276f9f5c641442b626860ba6cbf225f5cfb63

See more details on using hashes here.

File details

Details for the file edc_lab-0.2.25-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.2.25-py3-none-any.whl
  • Upload date:
  • Size: 92.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.7.0

File hashes

Hashes for edc_lab-0.2.25-py3-none-any.whl
Algorithm Hash digest
SHA256 51925a886efc655cc0cc6ee37be5ee8896558e19ee51238039d328442c586766
MD5 1d8ac6c91e4763379739e8d07857e029
BLAKE2b-256 4d269151478a32be9c2e9f063ccd944f4ee76552a561872d5dc3c820aab7b04f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page