Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi travis coverage

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.2.28.macosx-10.13-x86_64.tar.gz (126.4 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.2.28-py3-none-any.whl (93.4 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.2.28.macosx-10.13-x86_64.tar.gz.

File metadata

  • Download URL: edc-lab-0.2.28.macosx-10.13-x86_64.tar.gz
  • Upload date:
  • Size: 126.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.7.0

File hashes

Hashes for edc-lab-0.2.28.macosx-10.13-x86_64.tar.gz
Algorithm Hash digest
SHA256 e032a22830eec529a16e0497f4075e80195119310f4605716468dcbb818b583a
MD5 a7aef21c57dfea04227fd38b571e052a
BLAKE2b-256 9672c24c3497a27dbf4558d3e62040e9e47b51ce2df9976666a3ad5636a11d79

See more details on using hashes here.

File details

Details for the file edc_lab-0.2.28-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.2.28-py3-none-any.whl
  • Upload date:
  • Size: 93.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.7.0

File hashes

Hashes for edc_lab-0.2.28-py3-none-any.whl
Algorithm Hash digest
SHA256 cc50c6cc4d4c865168dc17a42dc9191b0073b4c90226f6649492e4dfe2c3d003
MD5 67f8f7b772df87a4551f3689f9fe3704
BLAKE2b-256 494eec7b220c0f57a3bbfef730c7cb77c3b256e5340380debc7a0ab5351ffecd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page