Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi travis coverage

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.2.30.macosx-10.13-x86_64.tar.gz (127.1 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.2.30-py3-none-any.whl (94.0 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.2.30.macosx-10.13-x86_64.tar.gz.

File metadata

  • Download URL: edc-lab-0.2.30.macosx-10.13-x86_64.tar.gz
  • Upload date:
  • Size: 127.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.7.0

File hashes

Hashes for edc-lab-0.2.30.macosx-10.13-x86_64.tar.gz
Algorithm Hash digest
SHA256 7f478716b37d4c36b2fa934a9f2b11028ba3044d4476bf7a7344d933caa30a8a
MD5 456793074d1904d848020293b5bd53bd
BLAKE2b-256 49dbb623d7049d921eb84f9663ff26f5988ab18849e85e8eb0c79b4b3c9e28f8

See more details on using hashes here.

File details

Details for the file edc_lab-0.2.30-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.2.30-py3-none-any.whl
  • Upload date:
  • Size: 94.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.7.0

File hashes

Hashes for edc_lab-0.2.30-py3-none-any.whl
Algorithm Hash digest
SHA256 5e92b701ecae21b49e7ee37c08a31c0edbc5bdee18d0f7bafb4134b451f626f3
MD5 0b4a3688d2d50df82970c1b33c4815b7
BLAKE2b-256 051e11d7212e11666f922700325472a170f6e5e4e6a34d2f778dc914657b91d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page