LIMS/lab classes for clinicedc/edc projects
Project description
edc-lab
Add to settings:
INSTALLED_APPS = [
...
'edc_lab.apps.AppConfig',
...
]
Configuration
Create aliquot types:
# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')
Add possible derivatives to an aliquot type:
# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)
Set up a processing profile:
viral_load = ProcessingProfile(
name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)
Create a``panel`` that uses the processing profile:
panel = RequisitionPanel(
name='Viral Load',
processing_profile=viral_load)
Add the panel (and others) to a lab profile:
lab_profile = LabProfile(
name='lab_profile',
requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)
Register the lab_profile with the site global:
site_labs.register(lab_profile)
Usage
Create a requisition model instance:
requisition = SubjectRequisition.objects.create(
subject_visit=self.subject_visit,
panel_name=self.panel.name,
is_drawn=YES)
Pass the requisition to Specimen
specimen = Specimen(requisition=requisition)
Process:
specimen.process()
Aliquots have been created according to the configured processing profile:
>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'
>>> for aliquot in specimen.aliquots.order_by('count'):
print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
edc-lab-0.3.18.tar.gz
(65.7 kB
view details)
Built Distribution
edc_lab-0.3.18-py3-none-any.whl
(112.0 kB
view details)
File details
Details for the file edc-lab-0.3.18.tar.gz
.
File metadata
- Download URL: edc-lab-0.3.18.tar.gz
- Upload date:
- Size: 65.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 141ba6cedc9049f194c5df0e2d1ad949b60d1937c124e4ff465ba3a235bd35b8 |
|
MD5 | e37410c3c01d87b14d8f1d3a03e8f601 |
|
BLAKE2b-256 | 8b0c30c9e0b3e6e1dc5c68a6bcdf180eb816ceb444ce755f2ecb12aaf8fc3dcf |
File details
Details for the file edc_lab-0.3.18-py3-none-any.whl
.
File metadata
- Download URL: edc_lab-0.3.18-py3-none-any.whl
- Upload date:
- Size: 112.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8181147877fad92eaa438fb8dbec9e9102d72213add96524d5cce0dd863f891 |
|
MD5 | ff9ef4737be672a3e766fe2484f2eda3 |
|
BLAKE2b-256 | f839e923c0054d805c0b342041939a9bad91ee86ef0f2d8a87c96237d5bc25b9 |