Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.19.tar.gz (74.6 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.19-py3-none-any.whl (118.5 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.19.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.19.tar.gz
  • Upload date:
  • Size: 74.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.19.tar.gz
Algorithm Hash digest
SHA256 bb402e96a9a78db5d7e6eb153782658349fdf9e29dc7b69bb0204445247476cb
MD5 60e891ffa8752837d7dc127909abcf09
BLAKE2b-256 cd279faa2f0a05068c7364efb6cc76ada092189cd9903d2d542ed7be0a12b9ee

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.19-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.19-py3-none-any.whl
  • Upload date:
  • Size: 118.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.19-py3-none-any.whl
Algorithm Hash digest
SHA256 4b73f3d0d78cfe9133f58fc746f5c69afe069aeec8725a9b29bbc212b70113c6
MD5 52f60e3a4e4676ffb4add90797a242ba
BLAKE2b-256 14a90c8d1729a37c258bf9a860db5c13e1bcf2b86e5a8453de9f9069102bf506

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page