Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.22.tar.gz (74.7 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.22-py3-none-any.whl (118.6 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.22.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.22.tar.gz
  • Upload date:
  • Size: 74.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.22.tar.gz
Algorithm Hash digest
SHA256 c972231c0fa7ddc366d29112fe5d25171ed6a79ff281c4ad9de8a1050ee91a09
MD5 518820c4318300b674208e0723508f17
BLAKE2b-256 bebdff2efbb91a3b1ef4b2ff2e2c5a0feaf41919cde53d31bfe759e0e3d4ec14

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.22-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.22-py3-none-any.whl
  • Upload date:
  • Size: 118.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.22-py3-none-any.whl
Algorithm Hash digest
SHA256 e58b3cad0beb8444a7fbcce358f0b70dc1efad1d676a58d223511f12a48412a2
MD5 33f4ddb911a3c1a2f3cafa615461c51a
BLAKE2b-256 832e9ae95d14ffb4082f505972ff132eb8b669c004cafec9b584e0a4aa5e9be1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page