Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.23.tar.gz (74.8 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.23-py3-none-any.whl (118.6 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.23.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.23.tar.gz
  • Upload date:
  • Size: 74.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.23.tar.gz
Algorithm Hash digest
SHA256 c24e80cca19e97f4535a3fdec6ff7c98287912bde432ffc6eabf14a7efa97e47
MD5 367a7177cbd2c01753bfc9c076528884
BLAKE2b-256 31ba8d7d548e7948d2fab798174ce6ae71d699bbdd538c98a9f516866bb32457

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.23-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.23-py3-none-any.whl
  • Upload date:
  • Size: 118.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.23-py3-none-any.whl
Algorithm Hash digest
SHA256 6e1d6eac00d6e336ce1157f296a21fe7578ecdcbf0fa05b1fd74f8b0748b4527
MD5 b18c3029f2f53c5169440efaac7d9b77
BLAKE2b-256 41d291b02ff2d732d18677641f003cacb90ed11c94b2458fb22b87090bb317fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page