Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.31.tar.gz (75.8 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.31-py3-none-any.whl (119.9 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.31.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.31.tar.gz
  • Upload date:
  • Size: 75.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.31.tar.gz
Algorithm Hash digest
SHA256 e4646cf9c33a6602e4f8ed45ba1ba1c71e4ea9cdf8e8f6e0869b000d4656f41d
MD5 191c5ce0e2319d78f0a80de069a17a4c
BLAKE2b-256 57dabed3eb84d15ec46351fd66f7db1aeab251af83f72f1c0aa85e8b81123729

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.31-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.31-py3-none-any.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.31-py3-none-any.whl
Algorithm Hash digest
SHA256 a70e30618b380fcc2c417383e5c3cfbe688a09ff6bc2942e536503e359d8eba2
MD5 0aba9903e4c92d10b5a9b8990a98ea3f
BLAKE2b-256 5cec0dcdc971f732d17dba8dbc0797430df7ee13b9ca60e9aafa0535c850de06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page