Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.32.tar.gz (75.9 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.32-py3-none-any.whl (120.0 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.32.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.32.tar.gz
  • Upload date:
  • Size: 75.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.32.tar.gz
Algorithm Hash digest
SHA256 414893a3f7fed5532fbdc596d75c04dd74ac8198c3f9ccc3a76ac2f35243be9f
MD5 bf7a7c3dc6389b5d2022fe9fb8e84d67
BLAKE2b-256 d5fa5159557300b139dd90a11c7935368087ce14fc20e08fc67af494ef0fbb2a

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.32-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.32-py3-none-any.whl
  • Upload date:
  • Size: 120.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.32-py3-none-any.whl
Algorithm Hash digest
SHA256 f8a917dc831b76714a282f8b77db2d71267523eb3934264355b364fe23767212
MD5 ba11b66d0212baa54b964d985423b6da
BLAKE2b-256 c6add104dd84ec24bfd027b60ba2a991dc1146e4066adc36e99e3dac726cc34e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page