Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.33.tar.gz (75.9 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.33-py3-none-any.whl (120.0 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.33.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.33.tar.gz
  • Upload date:
  • Size: 75.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.33.tar.gz
Algorithm Hash digest
SHA256 709afefea5c1145e316eb8b519b744e55799e9671f29d67f602b1298b01ea4ce
MD5 0ec0d80cee3e79959d398a6368edc47b
BLAKE2b-256 3c0d0fc70bca8ef4f274e32fc93f7b449fe45e66377d365077d63be25dd3900a

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.33-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.33-py3-none-any.whl
  • Upload date:
  • Size: 120.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.33-py3-none-any.whl
Algorithm Hash digest
SHA256 33a5db7b0ce63006ec4e100c6ce88570010be04520a3c90fb100cbdb58a2b145
MD5 1d32383d3235c4a9e960522057fd6c03
BLAKE2b-256 74ecd83be0192f390de5b8157c8100e007ac15c8687114445cacb78ef3e5d814

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page