Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.34.tar.gz (76.3 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.34-py3-none-any.whl (120.7 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.34.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.34.tar.gz
  • Upload date:
  • Size: 76.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.34.tar.gz
Algorithm Hash digest
SHA256 24df40c0710e40f75a8f5411d54d6e0eca7804e967eb129138cd690b0419a5e0
MD5 be5cdb18cfe95e0121d6dcc6a08198d2
BLAKE2b-256 16c34fbb1785da45bd2459388c852d352a42a8e76540fd2d46159d911b34302f

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.34-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.34-py3-none-any.whl
  • Upload date:
  • Size: 120.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.34-py3-none-any.whl
Algorithm Hash digest
SHA256 af0f27a7a43172544cd000b39a33232b9b5b7d43e80f8f95c29f530436b26d47
MD5 4c20372e1c0f62b5cd441289a603fc3b
BLAKE2b-256 6666de57b25cd495e48e6b456dfe34c6789c1ad2e988dc814974f1ec78e5d8a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page