Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.38.tar.gz (76.3 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.38-py3-none-any.whl (121.3 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.38.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.38.tar.gz
  • Upload date:
  • Size: 76.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc-lab-0.3.38.tar.gz
Algorithm Hash digest
SHA256 aa6dd26e4b5182fee23eaab66afc907c74e82efac0f4e69b35a1f2da744c2ca9
MD5 1d6d695157b12bd508dd36140c8decd2
BLAKE2b-256 1be1c27363e170bbac24a7664ba9424fdecc52b92159b65cbd2f0e11f9bb84d8

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.38-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.38-py3-none-any.whl
  • Upload date:
  • Size: 121.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for edc_lab-0.3.38-py3-none-any.whl
Algorithm Hash digest
SHA256 7df012008fb9611e137aea933c6797278eaace62217dbf018458966d8c8d6e63
MD5 39dca104efa6670f9a0943ba81775994
BLAKE2b-256 b0d62c92aadd655c90be7d3272b44e89e62ea15b16197df8d1941a2ccbbe74a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page