Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.39.tar.gz (77.1 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.39-py3-none-any.whl (121.3 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.39.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.39.tar.gz
  • Upload date:
  • Size: 77.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for edc-lab-0.3.39.tar.gz
Algorithm Hash digest
SHA256 f52d40a07ba0bde1e972349e190120fd078f20c1e114c7be93ea8e3846847c0a
MD5 2be755b9f7c9e22c6c021868ed41ca76
BLAKE2b-256 b6eccc5ea6031aad5492d76d8d85aba748752b056af6f3b66ec5c2c95bf26675

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.39-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.39-py3-none-any.whl
  • Upload date:
  • Size: 121.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for edc_lab-0.3.39-py3-none-any.whl
Algorithm Hash digest
SHA256 176f979127daade74ddb9cf4680ab89e246cf81b4cfe31b6748b3241b52ac1b0
MD5 285c5d8f0891d055e1834192f03ddc79
BLAKE2b-256 99879e666704998f97ff23bfde9b263f5ad49a9f5a0b5914e02ba4fb540eed17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page