Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.41.tar.gz (77.9 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.41-py3-none-any.whl (122.5 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.41.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.41.tar.gz
  • Upload date:
  • Size: 77.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for edc-lab-0.3.41.tar.gz
Algorithm Hash digest
SHA256 bd7205ddba6499c068b9375a8d8b33fbd2cb93a840fe23a672e29e989e6ffb6a
MD5 c5b743cb4902c428c70fc4a4aab9fcca
BLAKE2b-256 ad00fdce27ea5f88cb41d0bdab5eea50a859fdebb1aa120d1a32df5cb8f4529f

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.41-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.41-py3-none-any.whl
  • Upload date:
  • Size: 122.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for edc_lab-0.3.41-py3-none-any.whl
Algorithm Hash digest
SHA256 4972628e15a825d22006d7d3ba54d2855930ddc08932de4dbb5b5809c1f05469
MD5 39cd443d3eedec7dfbecd551bbabf482
BLAKE2b-256 29f26d79bee15f876924b3c3529a95a416821a5aef537fb0454175f53a182910

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page