Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.43.tar.gz (77.5 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.43-py3-none-any.whl (122.4 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.43.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.43.tar.gz
  • Upload date:
  • Size: 77.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for edc-lab-0.3.43.tar.gz
Algorithm Hash digest
SHA256 4f01db10d4c694942852bee99c40d37e77637d9c2c5852975a59ab0a4235743c
MD5 3a1f54ece4cca3a4c1de543f657466c2
BLAKE2b-256 72d2152d0291f97238e2f745a4c5ec5487641c7ced2700c5cd982da7f9f2c254

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.43-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.43-py3-none-any.whl
  • Upload date:
  • Size: 122.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for edc_lab-0.3.43-py3-none-any.whl
Algorithm Hash digest
SHA256 1cdf503824156475b1da03344456598769795ac454d668a2bdcce592f8ef47b5
MD5 9b9bc1b831140cba11576f9a54f7c8d7
BLAKE2b-256 8677ade445ce115c844cb318dbbbe636f6787a28dc3f6b23d2ed236bf3316def

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page