Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.46.tar.gz (78.8 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.46-py3-none-any.whl (125.1 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.46.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.46.tar.gz
  • Upload date:
  • Size: 78.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.46.tar.gz
Algorithm Hash digest
SHA256 197e4a2615228175053e7feb91363a58217642582cb18fb4e2b44f686d38f89d
MD5 2a8385fd596b7a59b4b9d7d362e5aac0
BLAKE2b-256 c910967e6055d34caa49f3b61c98f4b50ca30fd7ec97c42c34f889095865f2ee

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.46-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.46-py3-none-any.whl
  • Upload date:
  • Size: 125.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.46-py3-none-any.whl
Algorithm Hash digest
SHA256 6bef25a4137109b96940acc463bb55aef412f0f42e04d92c9e89bc5de00e31ef
MD5 8a1f35a7c5f01a95480fac8c682daa07
BLAKE2b-256 b45ee71d4551d5376d066203c6a74a7d8aff515b0dad405687e4eb40e0ea37ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page