Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.47.tar.gz (79.6 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.47-py3-none-any.whl (126.5 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.47.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.47.tar.gz
  • Upload date:
  • Size: 79.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.47.tar.gz
Algorithm Hash digest
SHA256 9c2cf2151aabe9815ea2892d0b0f7c4ad0593405efbb3fb58b23fd3c5fbc371b
MD5 194660558f041716e389ca5c0127e02d
BLAKE2b-256 76dece1d9b7353c26070c0a50294f0f08622f3e9f2a2a82e93b5b5006ccd8f8a

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.47-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.47-py3-none-any.whl
  • Upload date:
  • Size: 126.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.47-py3-none-any.whl
Algorithm Hash digest
SHA256 52871da411e87d24c904c6f9f8b3a13e75d0ff70449af39c94f463770c69e44f
MD5 e92823ad315ad0a709d951525a80640d
BLAKE2b-256 f52df973fcfb7f9d524a77d1fae1dce8e132251e9f853358ec793eae4c207bf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page