Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.48.tar.gz (79.5 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.48-py3-none-any.whl (126.5 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.48.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.48.tar.gz
  • Upload date:
  • Size: 79.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.48.tar.gz
Algorithm Hash digest
SHA256 c0c24eac23eeea202b26b9b26c228b82d61130e30e570d366f3454e9dfaffb9e
MD5 1cb92278ccd3f01c09293956accd8d5c
BLAKE2b-256 4ee9ffc93b3da12a13303e1bdfd9b054a674236c6c83936565cf7b29ea1e5fc5

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.48-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.48-py3-none-any.whl
  • Upload date:
  • Size: 126.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.48-py3-none-any.whl
Algorithm Hash digest
SHA256 ac3e39e16c0bc2d01e286c0f160315b85a41cdd9b2d1602d3e726f2983272664
MD5 6e69318010c35c0b9985f37cde0f1e46
BLAKE2b-256 7794b4855746b6009a3328ecd74fbc39a40e572ef621da6135b7100d74360472

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page