Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.49.tar.gz (81.4 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.49-py3-none-any.whl (130.0 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.49.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.49.tar.gz
  • Upload date:
  • Size: 81.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.49.tar.gz
Algorithm Hash digest
SHA256 a1bc9ef60ff4340c5517b8fe8c3911ceb5e8da1cafa2a93ab493ad47f70758c2
MD5 d1058c76ea914cfc0b07f238933f8805
BLAKE2b-256 25bda6050605b8bbef85db01c5c1b96c0aa1253abb9369cd3cefad39b4c1cd2f

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.49-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.49-py3-none-any.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.49-py3-none-any.whl
Algorithm Hash digest
SHA256 7c1e1118c345cb8b1b0a4209db7c731942f6b841a877b94936faf33f5c30d03f
MD5 90196c04da2d4359fb729652ed334ee1
BLAKE2b-256 989b8a6e8b2bbc4815b181dfffeb463e7b4b9da8a982a653760f5fcdbc3e7b4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page