Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.50.tar.gz (81.7 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.50-py3-none-any.whl (131.2 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.50.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.50.tar.gz
  • Upload date:
  • Size: 81.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.50.tar.gz
Algorithm Hash digest
SHA256 9a2addec9a0d01a8a715093e890678b6a479af8e871d2ea37fe94b320cecf228
MD5 423cdf7bb296849686cdee8051ee892b
BLAKE2b-256 65627e62feb0b482291e82d064c5d3dc71a44120e57b279fd5b9ad70c201c7a7

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.50-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.50-py3-none-any.whl
  • Upload date:
  • Size: 131.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.50-py3-none-any.whl
Algorithm Hash digest
SHA256 d2f35775732bdcfabd54cd56fa10e0fd8d352758dda08889826c609da96199a3
MD5 16954cb1d9ea19837f35e3d25d0e86bd
BLAKE2b-256 1f3817ab5a9c6112c4eec0ebd5e3c4d33f7e8288ded637c53d78b060b0fc8862

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page