Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.53.tar.gz (82.3 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.53-py3-none-any.whl (132.2 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.53.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.53.tar.gz
  • Upload date:
  • Size: 82.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.53.tar.gz
Algorithm Hash digest
SHA256 f17906dad2ec2ea2a3d27619700320cd09040178df449485293b510b79308b57
MD5 e61170a823ebf9bca7aaace68f49bf20
BLAKE2b-256 72d4326ed98f7519d06fa6b88bdee36de36d84465da481159c4b49a5a9ccef20

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.53-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.53-py3-none-any.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.53-py3-none-any.whl
Algorithm Hash digest
SHA256 1edbfefcc13252cb4b5a866a3ec4f766e0c9ecbd9f414a7db92b1c83b4ef179e
MD5 4d3c2127ac84660186cb69402eb60671
BLAKE2b-256 a30955222e357330875e9adff7ede68e6d219e3ad95102a79fe53402ab4ff53b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page