Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.55.tar.gz (82.0 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.55-py3-none-any.whl (132.2 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.55.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.55.tar.gz
  • Upload date:
  • Size: 82.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edc-lab-0.3.55.tar.gz
Algorithm Hash digest
SHA256 a15b2a5ceadce937376cb04c031a1ac57c61ae7e0bbc7ef21b0c21ec22bbbdb4
MD5 741c8f0dca8c6ca16f572c601b5a363d
BLAKE2b-256 914094f7ea0575805a7cd5ca530c327b8b0dc6bc528ca5ad4d885a453e2c987d

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.55-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.55-py3-none-any.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edc_lab-0.3.55-py3-none-any.whl
Algorithm Hash digest
SHA256 19b52479972f761b2a2b9262a2b817d66d2ac62f7ff4ba5f270c52c34d02f59a
MD5 fe0e3d50eb1fae1ef72213f4334a5573
BLAKE2b-256 46e0fdfb996dfd6619ff9479e26c4bf0559029eb0884c4665d008d1544992bdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page