Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.57.tar.gz (82.1 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.57-py3-none-any.whl (132.4 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.57.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.57.tar.gz
  • Upload date:
  • Size: 82.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for edc-lab-0.3.57.tar.gz
Algorithm Hash digest
SHA256 9ab606f701a2b48d8fbb7730a55d0b340b0ec06d923bf4e1663f9c70dba17949
MD5 9485eb34d95280a420907dfa8837d33d
BLAKE2b-256 d63f4519fc0711e3a187a2fde890f1d9fb318061d2ee9c9c2226fae63bdd3229

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.57-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.57-py3-none-any.whl
  • Upload date:
  • Size: 132.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for edc_lab-0.3.57-py3-none-any.whl
Algorithm Hash digest
SHA256 1625ad70a5b9ed19654ed06fd45f6450db6ea8d84e83c01f1a6309d57853b519
MD5 60b4175367b363e7fc89a11667e178de
BLAKE2b-256 5a9b6e5bafd90a7761b0e1ba218675c72957027fcf176254889836f2762198e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page