Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-lab-0.3.60.tar.gz (82.3 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.60-py3-none-any.whl (132.5 kB view details)

Uploaded Python 3

File details

Details for the file edc-lab-0.3.60.tar.gz.

File metadata

  • Download URL: edc-lab-0.3.60.tar.gz
  • Upload date:
  • Size: 82.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for edc-lab-0.3.60.tar.gz
Algorithm Hash digest
SHA256 c21c2af71c0fa08145f87ab118ca1fc7a4ea2466ed8499acf466887e5f49a985
MD5 8e8eece38b329e8eceff348a882b4ff4
BLAKE2b-256 a026514aede33c0e213cfc7052338150f220e2ceaebc53c2ae2e33d4470a31c9

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.60-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.60-py3-none-any.whl
  • Upload date:
  • Size: 132.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for edc_lab-0.3.60-py3-none-any.whl
Algorithm Hash digest
SHA256 c36a5f37b2867241daca19d288e7ff70096026c7abfb4995d8da7f355dffee36
MD5 125559ea021593a5582ac04cf7ca0bbe
BLAKE2b-256 d51726416789853d7a09fdf5f2b653be10b6c849fe6ba57ad4291ae27f3fac10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page