Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc_lab-0.3.62.tar.gz (82.5 kB view details)

Uploaded Source

Built Distribution

edc_lab-0.3.62-py3-none-any.whl (133.1 kB view details)

Uploaded Python 3

File details

Details for the file edc_lab-0.3.62.tar.gz.

File metadata

  • Download URL: edc_lab-0.3.62.tar.gz
  • Upload date:
  • Size: 82.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for edc_lab-0.3.62.tar.gz
Algorithm Hash digest
SHA256 91d5cf849c7d5b474d3bdb3216115d5a7c192aef34ae2151eec881d2043b6730
MD5 91a7bf98112fd9fcd472228f6378162d
BLAKE2b-256 3b537b972c66513e945c383ac203ed8eb1b16456f003121e30ac12ab9ae81819

See more details on using hashes here.

File details

Details for the file edc_lab-0.3.62-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-0.3.62-py3-none-any.whl
  • Upload date:
  • Size: 133.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for edc_lab-0.3.62-py3-none-any.whl
Algorithm Hash digest
SHA256 28be19ba4d79647c5fdb824dedad98b45e6444a26ac9dfc1afacdbd30219f6eb
MD5 6886705ff55cd96d5a25453a4c633dea
BLAKE2b-256 4358c241a67e94874979a6b4f453b12148dfbdf26c80ac863db85e7a5298a406

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page