Skip to main content

Use pandas with clinicedc/edc projects

Project description

pypi travis coverage

edc-pdutils

Use pandas with the Edc

To export Crf data, for example:

csv_path = '/Users/erikvw/Documents/ambition/export/'
date_format = '%Y-%m-%d'
sep = ','

class MyDfHandler(CrfDfHandler):
    visit_tbl = 'ambition_subject_subjectvisit'
    exclude_columns = ['form_as_json', 'survival_status','last_alive_date',
                       'screening_age_in_years', 'registration_datetime',
                       'subject_type']

class MyCsvCrfTablesExporter(CsvCrfTablesExporter):
    visit_columns = ['subject_visit_id']
    datetime_fields = ['randomization_datetime']
    df_handler_cls = MyDfHandler
    app_label = 'ambition_subject'
    export_folder = csv_path

sys.stdout.write('\n')
exporter = MyCsvCrfTablesExporter()
exporter.to_csv(date_format=date_format, delimiter=sep)

To export INLINE data for any CRF configured with an inline, for example:

class MyDfHandler(CrfDfHandler):
    visit_tbl = 'ambition_subject_subjectvisit'
    exclude_columns = ['form_as_json', 'survival_status','last_alive_date',
                       'screening_age_in_years', 'registration_datetime',
                       'subject_type']


class MyCsvCrfInlineTablesExporter(CsvCrfInlineTablesExporter):
    visit_columns = ['subject_visit_id']
    df_handler_cls = MyDfHandler
    app_label = 'ambition_subject'
    export_folder = csv_path
    exclude_inline_tables = [
        'ambition_subject_radiology_abnormal_results_reason',
        'ambition_subject_radiology_cxr_type']
sys.stdout.write('\n')
exporter = MyCsvCrfInlineTablesExporter()
exporter.to_csv(date_format=date_format, delimiter=sep)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

edc_pdutils-0.1.13-py3-none-any.whl (57.3 kB view details)

Uploaded Python 3

File details

Details for the file edc_pdutils-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: edc_pdutils-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 57.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for edc_pdutils-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 84f123399599ebf2df3c862cc1fe4dec60b59019f7f6e8e3ce3df934892c9f84
MD5 68081231e45b3a3cb545c014d3a423f6
BLAKE2b-256 e0e315d181f0b18bdc9e54df921b499073f44a17054c34e5a98d2318a6aedfe4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page