Skip to main content

Randomization classes for clinicedc/edc

Project description

pypi actions codecov downloads

edc-randomization

Randomization objects for clinicedc projects

Overview

The Randomizer class emulates the randomization of a clincial trial participant in realtime. This module doesn’t actually randomize in realtime. Instead, a CSV file is prepared in advance by the statistician. This CSV file lists the order in which subjects are to be randomized. The Randomizer class initially imports the entire list in order into a model. When a subject is to be randomized, the Randomizer class selects the next available row from the model.

A very basic randomization_list.csv prepared in advance might look like this:

site_name,sid,assignment
temeke,1000,active
temeke,1001,active
temeke,1002,placebo
temeke,1003,active
temeke,1004,placebo
temeke,1005,placebo
...

For large multisite trials this may be thousands of lines ordered using some type of block randomization.

This module will import (only once) all rows from the CSV file into a model. The Randomizer class selects and allocates in order by site_name one row per participant from the model.

randomizer_cls = site_randomizers.get("default")
randomizer_cls.randomize(subject_identifier=subject_identifier, ...)
# or just:
site_randomizers.randomize("default", subject_identifier=subject_identifier, ...)

Usually, the Randomizer class is instantiated in a signal once the subject’s eligibility is confirmed and the subject’s informed consent is submitted. A signal attached to the subject’s informed consent is a good place to do this assuming the sequence of events are 1) pass eligibility criteria, 2) complete informed consent, 3) randomize and issue study identifier 4) start baseline visit.

@receiver(
    post_save,
    weak=False,
    sender=SubjectConsent,
    dispatch_uid="subject_consent_on_post_save",
)
def subject_consent_on_post_save(sender, instance, raw, created, **kwargs):
    if not raw:
        if created:
            ...
            # randomize
            site_randomizers.randomize(
                "default",
                subject_identifier=instance.subject_identifier,
                report_datetime=instance.consent_datetime,
                site=instance.site,
                user=instance.user_created,
            )
            ...

Registering a randomizer

The default Randomizer class is edc_randomization.randomizer.Randomizer. Unless you indicate otherwise, it will be automatically registered with the site controller, site_randomizers with the name default. It is recommended you access the Randomizer class through site_randomizers instead of directly importing.

randomizer_cls = site_randomizers.get("default")

Customizing the default randomizer

Some attributes of the default Randomizer class can be customized using settings attributes:

EDC_RANDOMIZATION_LIST_PATH = 'path/to/csv_file'
EDC_RANDOMIZATION_ASSIGNMENT_MAP = {
    "intervention": 1,
    "control": 2,
    }
EDC_RANDOMIZATION_ASSIGNMENT_DESCRIPTION_MAP = {
    "intervention": "Fluconazole plus flucytosine",
    "control": "Fluconazole"
    }

Creating a custom randomizer

If you need to customize further, create a custom Randomizer class.

In the example below, gender is added for a trial stratified by gender.

Custom Randomizer classes live in randomizers.py in the root of your app. The site_randomizers controller will autodiscover them.

# my_app/randomizers.py

@register()
class MyRandomizer(Randomizer):
    name = "my_randomizer"
    model = "edc_randomization.myrandomizationlist"
    randomization_list_path = tmpdir
    assignment_map = {"Intervention": 1, "Control": 0}
    assignment_description_map = {"Intervention": "Fluconazole plus flucytosine", "Control": "Fluconazole"}
    extra_csv_fieldnames = ["gender"]

    def __init__(self, gender=None, **kwargs):
        self.gender = gender
        super().__init__(**kwargs)

    @property
    def extra_required_instance_attrs(self):
        return dict(gender=self.gender)

    @property
    def extra_model_obj_options(self):
        return dict(gender=self.gender)

    @classmethod
    def get_extra_list_display(cls):
        return [(4, "gender")]

The register() decorator registers the custom class with site_randomizers.

With a custom randomizer, the default Randomizer class is no longer needed, update settings to prevent the default class from registering.

Use the settings attribute:

EDC_RANDOMIZATION_REGISTER_DEFAULT_RANDOMIZER = False

Confirm this by checking the site_randomizers:

>>> randomizer_cls = site_randomizers.get("default")
NotRegistered: A Randomizer class by this name ...

>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.name
"my_randomizer"

Manually Importing from CSV

A Randomizer class will call import_list when it is instantiated for the first time. If you want to load the CSV file manually, import the Randomizer class and call import_list().

>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.import_list()
Import CSV data
  Randomizer:
    -  Name: my_randomizer
    -  Assignments: {'active': 1, 'placebo': 2}
    -  Model: edc_randomization.myrandomizationlist
    -  Path: /home/me/.etc/randomization_list.csv
    -  Imported 5 SIDs for randomizer `my_randomizer` into model `edc_randomization.myrandomizationlist`
       from /home/me/.etc/randomization_list.csv.
    -  Verified OK.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-randomization-0.3.42.tar.gz (53.9 kB view details)

Uploaded Source

Built Distribution

edc_randomization-0.3.42-py3-none-any.whl (63.0 kB view details)

Uploaded Python 3

File details

Details for the file edc-randomization-0.3.42.tar.gz.

File metadata

  • Download URL: edc-randomization-0.3.42.tar.gz
  • Upload date:
  • Size: 53.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for edc-randomization-0.3.42.tar.gz
Algorithm Hash digest
SHA256 ca382c9d44b1a8807ec430395609e91dc800c716b745d4aad17a03ae9766e5a5
MD5 94fc15c3d159f4f92e62cdf1df318bf1
BLAKE2b-256 348715cb81d4429fc67e5605943740e77d23f9e6d88507383e06718a0743f984

See more details on using hashes here.

File details

Details for the file edc_randomization-0.3.42-py3-none-any.whl.

File metadata

File hashes

Hashes for edc_randomization-0.3.42-py3-none-any.whl
Algorithm Hash digest
SHA256 23f211ae6915952d6e0dc763121a5a82ce64c7d6b9fc80dd4bd1351b5a377115
MD5 897b784df737ec14025ae8c528ef87b1
BLAKE2b-256 618faea1da93e312bcc3559f31f5eb9fedf25fb2b8d29151482bc49bcffa964d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page