Skip to main content

Python library of edge-ml.org: end-to-end machine learning for embedded devices

Project description

Obtain data from edge-ml

from edgeml import DatasetReceiver

1. Create a project

This will also pull the metadata from the server. Here you need the read-key. Make sure there is not trailing / in your URL.

project = DatasetReceiver("https://edge-ml-beta.dmz.teco.edu", "8c051972b56e6b4ad6bd0bf573da580f")
print(project)
Dataset - Name: W_001, ID: 645a255bdd19d537f2a50126, Metadata: {}
Dataset - Name: W_004, ID: 645a255b7d9569d03843a12b, Metadata: {}
Dataset - Name: Square_003, ID: 645a255b2ce253c26b52426c, Metadata: {}
Dataset - Name: Square_004, ID: 645a255b1d6af5e7ed04575f, Metadata: {}
Dataset - Name: Square_002, ID: 645a255bc21261d4cbdc990d, Metadata: {}
Dataset - Name: W_002, ID: 645a255b3ebe0af02b211d5d, Metadata: {}
Dataset - Name: W_003, ID: 645a255b074737af782167e2, Metadata: {}
Dataset - Name: Square_001, ID: 645a255bbacf5ab8ff044304, Metadata: {}
Dataset - Name: edgemlDemo, ID: 64635a79a7a7513e8ac92d32, Metadata: {'langauge': 'python'}
Dataset - Name: edgemlDemo, ID: 64635a7b6fec1d2800b1cd06, Metadata: {'langauge': 'python'}

2. Actually obtain data

Until now, we only have metadata available. We need to pull the actual time-series data using one of the following methods:

We can load the data for a single timeSeries

project.datasets[0].timeSeries[0].loadData()
project.datasets[0].timeSeries[0].data.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
time x
0 1970-01-01 00:10:23.339 -823.0
1 1970-01-01 00:10:23.378 -819.0
2 1970-01-01 00:10:23.418 -770.0
3 1970-01-01 00:10:23.458 -746.0
4 1970-01-01 00:10:23.497 -783.0

For a single dataset

project.datasets[0].loadData()
project.datasets[0].data.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
time x y z Gestures
0 1970-01-01 00:10:23.339 -823.0 -45.0 4025.0
1 1970-01-01 00:10:23.378 -819.0 -158.0 4075.0
2 1970-01-01 00:10:23.418 -770.0 -255.0 4116.0
3 1970-01-01 00:10:23.458 -746.0 -155.0 4059.0
4 1970-01-01 00:10:23.497 -783.0 -104.0 3963.0

Or for all datasets in the project

project.loadData()
project.data[0].head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
time x y z Gestures
0 1970-01-01 00:10:23.339 -823.0 -45.0 4025.0
1 1970-01-01 00:10:23.378 -819.0 -158.0 4075.0
2 1970-01-01 00:10:23.418 -770.0 -255.0 4116.0
3 1970-01-01 00:10:23.458 -746.0 -155.0 4059.0
4 1970-01-01 00:10:23.497 -783.0 -104.0 3963.0

Upload data to edge-ml

1. Upload data using timestamps from the device

Here you will need the write-key

from edgeml.edgeml import DatasetCollector
sender = DatasetCollector(url="https://edge-ml-beta.dmz.teco.edu", apiKey="4e6159c9c77124d71f298e93f1ed7254", name="edgemlDemo", useDeviceTime=True, timeSeries=["accX", "accY"], metaData={"langauge": "python"})
import time

for i in range (100):
    await sender.addDataPoint(name="accX", value=i*0.1)
    await sender.addDataPoint(name="accY", value=i*0.5)
    time.sleep(0.01)
sender.onComplete()
True

2. Provide your own timestamps

from edgeml.edgeml import DatasetCollector
sender = DatasetCollector(url="https://edge-ml-beta.dmz.teco.edu", apiKey="4e6159c9c77124d71f298e93f1ed7254", name="edgemlDemo", useDeviceTime=False, timeSeries=["accX", "accY"], metaData={"langauge": "python"})
import time

for i in range (100):
    await sender.addDataPoint(timestamp=i*1000, name="accX", value=i*0.1)
    await sender.addDataPoint(timestamp=i*1000, name="accY", value=i*0.5)
    time.sleep(0.01)
sender.onComplete()
True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edge-ml-0.3.3.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

edge_ml-0.3.3-py3-none-any.whl (7.6 kB view details)

Uploaded Python 3

File details

Details for the file edge-ml-0.3.3.tar.gz.

File metadata

  • Download URL: edge-ml-0.3.3.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edge-ml-0.3.3.tar.gz
Algorithm Hash digest
SHA256 6489b810d025c0aa0cfa606d14c7ce8a0dd2a6c3f7a7ff6ae038848e98a6a4ae
MD5 5661403a9d4acfbb6f8f74a72ca3267b
BLAKE2b-256 f1a5713a016ed8addd0db7e7fc44dd23a56cdcaa6e4fc4751e209a9032330f68

See more details on using hashes here.

File details

Details for the file edge_ml-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: edge_ml-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edge_ml-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 58cba0a52a86b53e1a98fb526384c1bb0e8f5e0c6617c908bf20ec316e6c150f
MD5 39fe4f272a8cf2300f40a66be5f26a65
BLAKE2b-256 3e89810ab9d82641a3e6e9e872e92bd7436fe7bc118af438c3094eb0da95d088

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page