A suite of tools and Python interface for Instructure's Canvas LMS.
Project description
Canvas Tools
A suite of tools and Python interface for Instructure's Canvas LMS.
This project is not affiliated with Instructure.
Documentation Table of Contents:
Installation
The project (tools and API) can be installed from PyPi with:
pip install edq-canvas
Standard Python requirements are listed in pyproject.toml
.
The project and Python dependencies can be installed from source with:
pip3 install .
CLI Configuration
Before discussing specific tools, you should know some general information about configuring and sending options to each CLI tool.
To know who you are and what you are working on the package needs a few configuration options:
server
-- The Canvas server to connect to.course
-- The Canvas ID for the course you are working with.token
-- Your Canvas API token (see the Canvas documentation.assignment
-- A query for the current assignment you are working on (does not always apply).
All these options can be set on the command line when invoking on of these tools, e.g.,:
python3 -m canvas.cli.user.list --server canvas.test.com --course 12345 --token abc123
However, it will generally be more convenient to hold these common options in a more reusable location.
There are several other places that config options can be specified, with each later location overriding any earlier options. Here are the places options can be specified in the order that they are checked:
./edq-canvas.json
-- If aedq-canvas.json
exists in the current directory, it is loaded.<platform-specific user config location>/edq-canvas.json
-- A directory which is considered the "proper" place to store user-related config for the platform you are using (according to platformdirs). Use--help
to see the exact place in your specific case. This is a great place to store login credentials.- Files specified by
--config
-- These files are loaded in the order they appear on the command-line. - Bare Options -- Options specified directly like
--course
or--token
. These will override all previous options.
Using the default config file (edq-canvas.json
):
# `./edq-canvas.json` will be looked for and loaded if it exists.
python3 -m canvas.cli.user.list
Using a custom config file (my_config.json
):
# `./my_config.json` will be used.
python3 -m canvas.cli.user.list --config my_config.json
A sample config file is provided in this repo at sample-edq-canvas.json.
For brevity, all future commands in this document will assume that all standard config options are in the default config files (and thus will not need to be specified).
Usage Notes
User Queries
When a user is required, tools and API functions accept a "user query" (unless specified). A user query is any object that can be used to uniquely identify a user. Valid user queries are:
- Canvas User ID (as an integer or string of digits)
- Full Name
- "email (id)" where "email" is an email and "id" is a Canvas ID
User queries must be unambiguous within the pool of possible users (e.g., students in a course). It is recommended to use an email or Canvas ID as a user query. Resolving a user query that is not a Canvas ID will take longer, because a list of users must be fetched from Canvas.
Assignment Queries
When an assignment is required, tools and API functions accept an "assignment query" (unless specified). An assignment query is any object that can be used to uniquely identify an assignment. Valid assignment queries are:
- Canvas Assignment ID (as an integer or string of digits)
- Full Name
- "name (id)" where "name" is a full assignment name and "id" is a Canvas ID
Assignment queries must be unambiguous within the pool of possible assignments (e.g., assignments in a course). Resolving an assignment query that is not a Canvas ID will take longer, because a list of assignments must be fetched from Canvas.
CLI Tools
All CLI tools can be invoked with -h
/ --help
to see the full usage and all options.
List Course Users
Course users can be listed using the canvas.cli.user.list
tool.
For example:
python3 -m canvas.cli.user.list
To list each user as a tab-separated row, use the -t
/ --table
option:
python3 -m canvas.cli.user.list --table
Fetch a Single User
To fetch information about a single course user, use the canvas.cli.user.fetch
tool.
For example:
python3 -m canvas.cli.user.fetch 12345
List Assignments
Course assignments can be listed using the canvas.cli.assignment.list
tool.
For example:
python3 -m canvas.cli.assignment.list
To list each assignment as a tab-separated row, use the -t
/ --table
option:
python3 -m canvas.cli.assignment.list --table
Fetch a Single Assignment
Fetch information about a single assignment using the canvas.cli.assignment.fetch
tool.
For example:
python3 -m canvas.cli.assignment.fetch 123456
# Or
python3 -m canvas.cli.assignment.fetch 'My Assignment'
Fetch Assignment Scores
To fetch the scores for a specific assignment, use the canvas.cli.assignment.fetch-scores
tool.
For example:
python3 -m canvas.cli.assignment.fetch-scores 123456
# Or
python3 -m canvas.cli.assignment.fetch-scores 'My Assignment'
The student's email and score will be written to stdout as a tab-separated row.
Fetch Assignment Submission Files
To fetch the files students have submitted for an assignment, use the canvas.cli.assignment.fetch-submission-files
tool.
For example:
python3 -m canvas.cli.assignment.fetch-submission-files 123456
# Or
python3 -m canvas.cli.assignment.fetch-submission-files 'My Assignment'
Only assignment with a submission type of "Online - Text Entry" or "Online - File Uploads" will be downloaded.
By default, files will be written to the out
directory.
This can be controlled with the --out-dir
argument.
Upload Assignment Scores
Uploading scores for an assignment can be done with the canvas.cli.assignment.upload-scores
tool:
python3 -m canvas.cli.assignment.upload-scores <assignment query> <path>
Where <path>
points to a tab-separated file where each row has 2-3 columns: email, score, and comment (optional).
Each row does not need to have the same length (i.e., some rows can have comments where others do not).
Empty comments are ignored.
The --skip-rows
argument can be used to skip a specified number of header rows.
For example:
python3 -m canvas.cli.assignment.upload-scores 'My Assignment' grades.txt --skip-rows 1
Where grades.txt
looks like:
user score comment?
1001 75
alice@uni.edu 100 Great Job!
Upload Single Assignment Score
To upload just one assignment score without a file, you can use the canvas.cli.assignment.upload-score
tool:
python3 -m canvas.cli.assignment.upload-score <assignment query> <user query> <score> [comment]
Note that the comment is optional.
For example:
python3 -m canvas.cli.assignment.upload-score 'My Assignment' alice@uni.edu 100 'Great Job!'
Fetch Gradebook
To fetch the full gradebook for a course, use the canvas.cli.gradebook.fetch
tool.
For example:
python3 -m canvas.cli.gradebook.fetch
A gradebook will be written to stdout as a tab-separated file. To output the gradebook to a file, you can redirect stdout to a file. Expect this command to take a few minutes for larger classes.
You can limit to gradebook to only specific students by specifying their IDs on the command line. Any number of students can be specified.
python3 -m canvas.cli.gradebook.fetch 12345 67890
By default, assignments and users without submissions will be pruned.
They can be included by using the respective --include-empty-assignments
and --include-empty-users
flags.
For example, you can write a gradebook with all assignments and users to grades.txt
using the following command:
python3 -m canvas.cli.gradebook.fetch --include-empty-assignments --include-empty-users > grades.txt
Upload Gradebook
To upload a gradebook, use the canvas.cli.gradebook.upload
tool:
python3 -m canvas.cli.gradebook.upload <path>
Where <path>
points to a gradebook file that has the same format as the output from canvas.cli.gradebook.fetch
:
a tab-separated file with users down the rows and assignments along the columns.
The first column is user queries where the first cell is ignored,
the first row is assignment queries where the first cell is ignored,
and the remaining cells are the associated scores.
Any number of users and assignments can be specified as long as they exist in the course.
Empty cells will not be uploaded.
A gradebook file can look like:
user 98765 Assignment 2
1001 1 2
alice@uni.edu 3
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file edq_canvas-0.0.6.tar.gz
.
File metadata
- Download URL: edq_canvas-0.0.6.tar.gz
- Upload date:
- Size: 25.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93b1a80abb42d572b23fcf0af804f31f5101eae4eca1cca08dc1ab1b42f9857a |
|
MD5 | 6ce9c648bd01e2f0c6459cf94f86b9f1 |
|
BLAKE2b-256 | 1879a352c80630211f7f16ac489ec3b61c180bc2525729c8787938aca2e87264 |
File details
Details for the file edq_canvas-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: edq_canvas-0.0.6-py3-none-any.whl
- Upload date:
- Size: 37.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65fd0cbc2be15ed3ab66c91d0e0ba19e287534c43e541821ec43ed8b434402ff |
|
MD5 | 018694b9b9fc56498d1097cb313b8125 |
|
BLAKE2b-256 | 3554a769401565b1cff94b78615f50a0edcad60e776ec31c26f655985de4ab2c |