Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.14.0

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.14.0"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.14.0.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.14.0-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

edsnlp-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edsnlp-0.14.0-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

edsnlp-0.14.0-cp312-cp312-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

edsnlp-0.14.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

edsnlp-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edsnlp-0.14.0-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

edsnlp-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edsnlp-0.14.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.14.0-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

edsnlp-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.14.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.14.0-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

edsnlp-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.14.0-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.14.0-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

edsnlp-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.14.0-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.14.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.14.0.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0.tar.gz
Algorithm Hash digest
SHA256 724e910afbf19b9773ea1b5b83d8ed4b1ec702d8dc9de849fd5e188672cad8ac
MD5 b6a23e99d72a9458a49ae485b85b3313
BLAKE2b-256 7646eca7754cf9e91cfb6932f686246a5a19bf3c719451646c154ec228359e46

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.14.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5b5af31ee14fa0225a115512ec5be2ab29e8a5203251de07a28f326cbb71d25b
MD5 ca7c60e86486103a3812d249add1509b
BLAKE2b-256 8b06a96987e25cea8bc41483c7f44acaae9fe931d7985f2e3131eddc76056d85

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 239392e5307cbe10f5642931dba8299ce9e46c5a501727fbecd1247f60cbd803
MD5 4c8c73b3e4650c5c3fd8b91254c82dde
BLAKE2b-256 a5a38a069f6b9e7483105e98d279007ffbc80ea92604281c1a7c2188536d4823

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73d3cb50484a8d77d3e61546975ddf30d2c1e70b504d8252b3342bd2fb3af43f
MD5 bb9c21ef34dab036d43171ec7f86a7e4
BLAKE2b-256 01bbbfae23bf3b148cc9aa7408a5094400082eb3e252e828dc911adde7cf5a91

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2c3e04735a998b7bf24e2fae3860cee8ce4a77e90a3cb34813011d12db94b6f3
MD5 7019a667e94d83b3d97e9953147f9b27
BLAKE2b-256 39a6b97d54e0454b4146623bc031ca40ac2274d9d5240fbd540d096a9af82e0d

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.14.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4d32f7b6869a4845d637aeb0f6c377dcadbe60ebf1aab0f5867203574eea7ceb
MD5 30fbe6820bbf477c9b8fde31ce8f70ad
BLAKE2b-256 4ad01df7956083ea091fd0c4eb4998851d265173f3a52f944919cb35c736b355

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80b7ca1b29f0985133e55b85eb587e0137478e5d6a6b5c4a37e779fcef41bba7
MD5 b82a14967daa3de72e0254c0ee441bff
BLAKE2b-256 139ffa8b179f7bf5a7349183355796ab627be271fd908c812e1a998993c1bac6

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 766bc031d04bf1e57dc361aef1faf40e1c26482a72e1ddf518d009ee28e4361b
MD5 c51ba1d33643f9a648e71149b7621836
BLAKE2b-256 a4cadca2280e3dc079ef1e6d5430e289e31299cd9c09dfc681b2d7b94891419e

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a773d2726104c18757e5b226407082c9347b7fde48a0a70fe72cb7afa04d2b7
MD5 aca0b135e1599b5dfaa45ed4fa6f25df
BLAKE2b-256 3286a91295c18eff413c41997141dd08d4a50f278198fd0fb2ea6576c6b8f487

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d4415e7430f91b820df1f1805aab6e4ff061e44e1d7129a81f9ee0da6aa2d866
MD5 2fde08991335026357e4544e0e10715f
BLAKE2b-256 02d1b9fd4c43281dfe83911e075f2f039ec5688296d3aa8e5f5a9892a852c826

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8a46e04a4189b771e437666cfb0fccd6f5e2b84fd21f32e22fd94537be93f7e
MD5 c645c8d7e58ef37024d46646006e2a72
BLAKE2b-256 a5e2eb85bd7ab82fc83c7f9870be8cc4b1ff251a1d1e992cd395809890a7928d

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02f418758ddd7391f637a98447792c9842f2bbf39f6f675301aa2a9e170e327d
MD5 3b0cdc6cec62d5aee7dcd68382ca1a85
BLAKE2b-256 56ad450a9ec385cc8952c5a6e37d9ddd977205200a64dba8d01b28c08e3613dc

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5804afd9a9b4e29fc3c4ad716a12073deec40a6a47fb48524e492bc655af0f99
MD5 12483d748163ae16e3cb3a215c2f7296
BLAKE2b-256 fadcd406bd16fa1ebc7abd7d125823dea970a3813b86d21f9b82aad578003666

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 797c06a34121d090ff1646525b118d1341424deb04d896ba7c9d993f21e013f6
MD5 bbc958df4a34f1d414a078b8633ecbcc
BLAKE2b-256 1e504ed3e74c14d74f8d041cf915c538ada085769b9e67c84bce51496b647f7b

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7b1880c19e512afbc1b696231a7ecd42b09e63567841f881a33395e788e750a
MD5 0d2d62daa41f7ef26f617370a580b699
BLAKE2b-256 ee583fac23457923702267720cb719fdf75593013e7487aff769fb91ff8f7d92

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07a98438dbd95d8bedfc35a57af261e7e8b082640ea1591e15754322b04b417b
MD5 ac0c5b2acc1a97050afb9513a5e208f4
BLAKE2b-256 df0951b7a9676e66e0f18f239e8a810a022c984a14dfd843644677f6b65e0684

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f3a53ab8670f282af116c3bbc11d89c5e191fc61b60efd6a15fdd2113ad9f1e
MD5 a29a88f4abad16dabde9e95357d7cd73
BLAKE2b-256 4bcadb193d5b11cf9d138b1071bf00fbac620a01f93bdf8ad2a9bb569db97d1e

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5c143737d31145d2cf04a59ef3405e546436fe558d44557374208f2837b96cc6
MD5 0dcc89b7c850dbea9aafee8e48b87eeb
BLAKE2b-256 94f4391fe7acb59233588055caf4be295234af25005b6e69c18bcef2d1649237

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd93bac129aebc5a1956f52796a308f09d8951a23ed071d947c55f61e568936a
MD5 c35fe6519e60075fb4e4246d9315ac37
BLAKE2b-256 25d320d08137af91448167bab557266c9818d264602f0f5a75c745555e3bcfad

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 078aa59a05d1f77d496da7dfc466f53e52c32f7218c9b949f087add88361f7a7
MD5 72e3aa6cde8f245119246af847defd82
BLAKE2b-256 6fa893d2c2bc25c3caf9775e943176d93100a8d04cfa2cec9f294426f8049efe

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dbffb3fe8aeb93c0535b217493dce63d4a6b377e16d976eba399a20c9edc015
MD5 6b16ad9523890bb15dd0f21697e6518c
BLAKE2b-256 632fe5fdfb759e879ae3afa0f61188fb636413129277f052daa6c9b4791596e4

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for edsnlp-0.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fcd8ea226932e2b0dd724494c37b14a0a6720c5d0c9ddb405d07e8e12981c07b
MD5 5435e584fad5660dd33c8fc527c0c0ca
BLAKE2b-256 e71710cc4aa732616f4c1833182e1c65456bdd181dfeec44b2727032a951e4c3

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4712a181b24a8361c6893612409f644a05ccd64c5a00342b0549cc0a5d62b0f8
MD5 315b551ee923a1c25f57f79b4b49df88
BLAKE2b-256 2b1c8fa0f5f6fae82dd7061f90c21f22c8d9dd732da563b723dfd4068479b2b8

See more details on using hashes here.

File details

Details for the file edsnlp-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 873b847f21dd5c60fadefd9a4e8ff298a2dc364fe79a6cf653947ade263ffd57
MD5 5802ec73337bebc37fd0da72a398a6b3
BLAKE2b-256 03518cd4e3f8686fbf26f4a84b92369ba990452310be2745a55e72bc5b461bfd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page