Skip to main content

Multi-Label Anisotropic Euclidean Distance Transform 3D

Project description

Python Instructions for MLAEDT-3D

Compute the Euclidean Distance Transform of a 1d, 2d, or 3d labeled image containing multiple labels in a single pass with support for anisotropic dimensions.

Python Installation

Requires a C++ compiler

The installation process depends on edt.cpp for the Python bindings derived from edt.pyx. edt.hpp contains the algorithm implementation.

pip install numpy
pip install edt

Recompiling edt.pyx

Requires Cython and a C++ compiler

cd python
cython -3 --cplus edt.pyx # generates edt.cpp
python setup.py develop # compiles edt.cpp and edt.hpp 
                        # together into a shared binary e.g. edt.cpython-36m-x86_64-linux-gnu.so

Python Usage

Consult help(edt) after importing. The edt module contains: edt and edtsq which compute the euclidean and squared euclidean distance respectively. Both functions select dimension based on the shape of the numpy array fed to them. 1D, 2D, and 3D volumes are supported. 1D processing is extremely fast. Numpy boolean arrays are handled specially for faster processing.

If for some reason you'd like to use a specific 'D' function, edt1d, edt1dsq, edt2d, edt2dsq, edt3d, and edt3dsq are available.

The three optional parameters are anisotropy, black_border, and order. Anisotropy is used to correct for distortions in voxel space, e.g. if X and Y were acquired with a microscope, but the Z axis was cut more corsely.

black_border allows you to specify that the edges of the image should be considered in computing pixel distances (it's also slightly faster).

order allows the programmer to determine how the underlying array should be interpreted. 'C' (C-order, XYZ, row-major) and 'F' (Fortran-order, ZYX, column major) are supported. 'C' order is the default.

parallel controls the number of threads. Set it <= 0 to automatically determine your CPU count.

import edt
import numpy as np

# e.g. 6nm x 6nm x 30nm for the S1 dataset by Kasthuri et al., 2014
labels = np.ones(shape=(512, 512, 512), dtype=np.uint32, order='F')
dt = edt.edt(labels, anisotropy=(6, 6, 30), black_border=True, order='F', parallel=1) 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edt-2.3.2.tar.gz (32.4 kB view details)

Uploaded Source

Built Distributions

edt-2.3.2-cp312-cp312-win_amd64.whl (232.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

edt-2.3.2-cp312-cp312-win32.whl (196.9 kB view details)

Uploaded CPython 3.12 Windows x86

edt-2.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

edt-2.3.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

edt-2.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

edt-2.3.2-cp312-cp312-macosx_10_9_x86_64.whl (336.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

edt-2.3.2-cp312-cp312-macosx_10_9_universal2.whl (620.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

edt-2.3.2-cp311-cp311-win_amd64.whl (238.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

edt-2.3.2-cp311-cp311-win32.whl (200.2 kB view details)

Uploaded CPython 3.11 Windows x86

edt-2.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

edt-2.3.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

edt-2.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

edt-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl (342.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

edt-2.3.2-cp311-cp311-macosx_10_9_universal2.whl (609.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

edt-2.3.2-cp310-cp310-win_amd64.whl (238.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

edt-2.3.2-cp310-cp310-win32.whl (200.3 kB view details)

Uploaded CPython 3.10 Windows x86

edt-2.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edt-2.3.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

edt-2.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

edt-2.3.2-cp310-cp310-macosx_10_9_x86_64.whl (342.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edt-2.3.2-cp310-cp310-macosx_10_9_universal2.whl (610.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

edt-2.3.2-cp39-cp39-win_amd64.whl (237.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

edt-2.3.2-cp39-cp39-win32.whl (200.2 kB view details)

Uploaded CPython 3.9 Windows x86

edt-2.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edt-2.3.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

edt-2.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

edt-2.3.2-cp39-cp39-macosx_10_9_x86_64.whl (343.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edt-2.3.2-cp39-cp39-macosx_10_9_universal2.whl (615.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

edt-2.3.2-cp38-cp38-win_amd64.whl (239.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

edt-2.3.2-cp38-cp38-win32.whl (201.1 kB view details)

Uploaded CPython 3.8 Windows x86

edt-2.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edt-2.3.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

edt-2.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

edt-2.3.2-cp38-cp38-macosx_11_0_universal2.whl (609.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

edt-2.3.2-cp38-cp38-macosx_10_9_x86_64.whl (341.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edt-2.3.2-cp37-cp37m-win_amd64.whl (232.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

edt-2.3.2-cp37-cp37m-win32.whl (197.9 kB view details)

Uploaded CPython 3.7m Windows x86

edt-2.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edt-2.3.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

edt-2.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

edt-2.3.2-cp37-cp37m-macosx_10_9_x86_64.whl (336.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edt-2.3.2.tar.gz.

File metadata

  • Download URL: edt-2.3.2.tar.gz
  • Upload date:
  • Size: 32.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2.tar.gz
Algorithm Hash digest
SHA256 c975c5b2591e149dfc84350c508e37792ad75fc52746d4eb1b91e21f3a4f4a1f
MD5 bffdeaf4ef31077f0389859286c58220
BLAKE2b-256 08f931d1f47b70ec5d425cfb42520dc48a46464544551ed027d52788f2aee780

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edt-2.3.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 232.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b1b5454482dba04eb3e34be5b54ac4a47ac4c8b5b232c0950baa1cdc55910300
MD5 3dbe98ec60f02cc57a426c5d20523cf9
BLAKE2b-256 dfdcb8fa3dc38dce969c666128c0fbe7f97c6370e4d10811c95c944b6bd8b4c3

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: edt-2.3.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 196.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c6d0adddb5ee1077d4964de49264c597840956031853f2c7e92e044e930be949
MD5 af59ca6d6b70868ad1e32ece9244c917
BLAKE2b-256 693277458c10e78709dd3ae133985cb310bac132a89b4bf3503f83d143a30e59

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39a03fdfb44dda9b2ec20d2e5acb757608cea64842a449a923dbfa40ea387494
MD5 8e8061403896fb3a0089d19921480cd8
BLAKE2b-256 3e9781f848b08539ba459030a26092b9742c6fc5930fc07f7a3a4f0cead26fe4

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2c04b20286c9b3ab31661d8c214523c98c26f40d5911d0a33739246c0af52835
MD5 f6d7e6063363440ad25c8ae70860b297
BLAKE2b-256 a3ca87863415dcd94c3c06220acf5dad6450a109df354e238c78edcec4dea287

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 257089da5cbe2239a7f176b27214bb6ad63f75b7f27a90203297bd6a881e00d1
MD5 eea12c2ab947bc73a9f5ae079e6e43cb
BLAKE2b-256 da081499a0d39451ffe859b8c16dc267e67be5b44ec3d311e0f87a72bd5bbb17

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce2018b010e6247aa080b816e07f2b4440411daec4123210d970efad0750f754
MD5 a479b266c0afaae3c48c86717f4344d0
BLAKE2b-256 fb3503090c6f3454911c125dcb278c0aa4f19c29a30540a36a5f374d285bc290

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7fd554508d4be71bbccf769200a492621d1b307c8a0be5ba61f84658d340970d
MD5 1fdf72d296265e4f0054ac2a9024b4a2
BLAKE2b-256 254dae77651494083b062a9a47ec131a78ea4eb49f0c8cb5b0190760802ff7be

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edt-2.3.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 238.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4f73d20fe12c46215a329439646a7410976c37063ad15020b9410ae99ddc11e6
MD5 b992730294ebdf47ccda9e56a7ba1b37
BLAKE2b-256 21817787d6a3474f042ab1bf31e9dda5895854b05c1a81a5076e4cbe753e9592

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: edt-2.3.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 200.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7542ec3ac2125b23188ea25f280420bb24977e1d8c40ed0a776c685a61966d5e
MD5 a14c8b81c452fd277364a7c8a1219b62
BLAKE2b-256 824c33382abfd8a785d9bc89bbbf161335e95a6d3dc853fb9a909c45b1081c2c

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16c9cff210db7fbe70aa26fb44edda094901c3082405850e51ff90520d42b18e
MD5 b2fc0ce12447eb86a30b0b4970f10bc9
BLAKE2b-256 c1647687e713ee46fd36519e22b6e2cf5b171895b1fc072adbc2dd2d9f84337e

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 72fae359975a0e662bd28b9e9ae81587d7ca96ed42f8d467c13f0ae827a927d1
MD5 14e29270f76877b5274228ca821acf16
BLAKE2b-256 70aa6ecbbce6a6807c59e26d85a00b3f311b9732044e5c1955c9cddf9efcd144

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c7d83d419d2556beeeb05ffc301fdde68133bb673c86759000dbdff78c0941a
MD5 bc815b2b430d145e5448f5e37d15ad14
BLAKE2b-256 10d9321d1fc9d3b2cd5f731761bc5a873c422c936540919dc8dbf4dae59d177b

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb0442f2010e96bb4764b508939b615484c9428db37708bc654d9af17f5cbb1c
MD5 5c2acc55b07fd34979412713d624171a
BLAKE2b-256 d12bdf1986e2b7641589fd759d52ed5f5a37021c5b3a47f5c9c1b24d67647b51

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aea5686d7562480dfed3ff05c24dc555ccdd17559706786628c0821a39dac5fd
MD5 4bba78a7094e4539f6e937e002999d86
BLAKE2b-256 8ad319f66c7be5b4bc7d9ddc8814d06ea043706fc742be39fcdf1911c507f2d6

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edt-2.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 238.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2d22e7fe48c66159bae3570000ff4dfe6972c543a2cab3348b5ce0dfeecfb26f
MD5 6cbd92d8b7c8c50839e23f3b5137404b
BLAKE2b-256 99f55e9ba167656252139e2dfb7f9e554e7bff60385f34f26f5fac0747193648

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: edt-2.3.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 200.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 389350231191c5482ae7be6e80c54a2244aec4e6ffc537b4c56eccfaf340eba2
MD5 e310b226884ab926713352e1d6a63ebd
BLAKE2b-256 e869562f43259ec0da0cba27545ff48f23feb33c30609f27ee70246dc528f002

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 004944995b6cd5c8153171ccefde92a7ace0df097035c4bc319a1fd6ebd014a9
MD5 db09502ae102cb8def2bc71d5c8110d2
BLAKE2b-256 3eb1190ba6f7769509c2182cd042701f298ceb4f83808701ffca0e50a3a38c0c

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ee90964ebeaf146e7833ab53f4717181245af387c2ad6939c2cbfc5ffe2d3266
MD5 748f4ac87b8de724e23b0ed46a98bfb2
BLAKE2b-256 71994af677f5e81526ba595ad717af6b5c0081b74ea18310a051863c28504885

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f25794e522fd473757dc087a5a706a7e7351a02bf9e9a9e44863fee654004abd
MD5 ff3baa06a036e5809134d2fe794399ce
BLAKE2b-256 7367e42c8ae1ec1dec54ccc54b3c44dd1ecca408db1d1e70fb727ba1c01662ac

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6dfee1ebd737453164b4ff04ba091ed4280730a6264e467ea75d90c1c0c8085
MD5 282535a205205a5799743eb0fcdbaa4a
BLAKE2b-256 fefbdf8e9a496dda7fdb3dcc25c605fa7697be51ddbe4c31e0bbdd7af5b360d7

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ba49c0eed0b11316db4faebc35a35e0e9ff424341ebc49e48b48e3dc4b890644
MD5 cc4a1f52baaa80d39cbf807b2911bedd
BLAKE2b-256 8f76002e8f6e9f8f2c027e71f2333937448bbce5b9898e23aea455ce50e91e38

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edt-2.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 237.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4dfde9c31beec30651d1ef18f84eab3f88f8085a0ef6971dc28c0a5874d4c232
MD5 f170525bc9afdbd833d3dbcc2804bcdc
BLAKE2b-256 58a824b252324f15f69405bd74f6c91cee506687d2bf6db2e21237a59fe22bc3

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: edt-2.3.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 200.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 eb75705192fa6b4ad1ed1ba0223192e57efc8d8a5effd6a8eddd09bdb1907779
MD5 f56d4a6bd734ef59d81cf6f4e68c6b43
BLAKE2b-256 3094947b772ff3e4fd320a4ff694f9fd21d59fb71c29fe792ca03421d6a33b2a

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15f178dd62afa80a3652712bef5999a11759d8db29b6d3dfddc833471b6e77a1
MD5 f429371c8b8aba0dfe7d3b8dbcd327bf
BLAKE2b-256 a21ab36bf1a6ebba5c0cef7cf9d85347feaff261488a4128c1bd217e6f8ba5ca

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 24a4b5ab933da949453aeefe3188eb27d2006f138c81018f0d1813240ba4dbf5
MD5 2bdcd9a4c1b3a6f7d9eca5b06b723b27
BLAKE2b-256 b124ec9d09f464491559512d2bc0439ca52612c8a6cd15f99775add67e90805f

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3aad8e5c3a738dd3f9be5100865e64a0d6e5ca0168f846eb07b0fe3b35c5a2b1
MD5 8897dc8c100bf6c660d7d327adebfa11
BLAKE2b-256 83b70833b8ea9d436b405a1e6753f38c3e24fa9724819f12ee9c3f8984fa47e5

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cee0d5d5d4928a9fb2a77f60a159c3d7bf35179b112cd4fc134f9842675aa333
MD5 207dffd2088dd554bc9ac3042309c20a
BLAKE2b-256 9d13b6b14f544a6dc9d02388fb5ba2c33e68f581ffc5754da9673fdc7f3f0cef

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: edt-2.3.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 615.3 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0772a197cb5c31c6bf6500c5e10a8f8ee562906c91d12583d95c06108f1d517d
MD5 799df5a4cd67cc72a14a691ea80bf842
BLAKE2b-256 1d6cec6beac2d659a7b2a9520b3baa73daa558968c559b24a24a84382cbe3f07

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edt-2.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 239.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9d45064e97e65da2b8ac229d8934168169a38efeda024607ff942b2637404f3e
MD5 93730be0a65e3103bdd7894c3be452f8
BLAKE2b-256 7e049078adbf612e6328cddc03b606db1edbc62687efd90d0a4ef584ab79826c

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: edt-2.3.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 201.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d862e7602cbc481780f291e37c02bb9e8db2a660f6fa41f43a5686fb10efbfbf
MD5 571f468b1bbc0f34dbd71dadb531864a
BLAKE2b-256 4ff0c38de618c861d2aa6cc546b6c5b4d325d4dff75f33f15ee88b4fa2ac18cb

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12d92fae4ee03b9edbec5897d3166ac7f010ac3149399ce360228d5286fabd21
MD5 cc706d988148814f5325d9f5d22f4427
BLAKE2b-256 ad9b4b7c01e914c3bf5121f63239cdab56b4d8a2b832891eee715ec192f28ee9

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f98eb986d6a03eaa95d26de496ea4ab3101b42f2c1610f47f4fe1cb7924683b2
MD5 2f86712b13945ee8d8bfbdaf277e0ad5
BLAKE2b-256 b37d145f4d7a33fb73db68cd9f2cbb4b393a554daef3e966bc7bd750e3e2f6b3

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2df83372c765359bfa5d2aec0d050c6824f16abff34283623c8e176ecc8bf614
MD5 68d2ae7d9100f6f4b3397fb3b4773658
BLAKE2b-256 2a7818e28a65d7a804364d0a381b5577f9be8da2d9fae10463dc3f8c31fb2fb8

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

  • Download URL: edt-2.3.2-cp38-cp38-macosx_11_0_universal2.whl
  • Upload date:
  • Size: 609.1 kB
  • Tags: CPython 3.8, macOS 11.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 6d0a0f695d59203ce1a9265bae818d775278a8c938d21e022e265d04d748b3f2
MD5 ff38257f0977bca844506abcf899e154
BLAKE2b-256 4f773e5f813104c5af33fb8333709de8a5aa36c8688a131892ff0c28bca41cfc

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a31cd4fd88be8363bc566bfa54ba684d89bfc0046d700dfc3ad8b72b90ec8434
MD5 fbbddd60051cc5c38092f465ef691831
BLAKE2b-256 44b4408162f0df713f13b2aa3df879249157f9e65584ca06946acb0f5bc5488b

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edt-2.3.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 232.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bed6f2b5c5388de13122bb4b7da197f0cbc3c890a5af5d3c899b10a1b272470a
MD5 e92d6058dab9f47a132ea8bdaa156705
BLAKE2b-256 0f0d40e018d3bf5f0b21a4a8ae0129b1374b89dcf0808b147b525fb0a6072289

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: edt-2.3.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 197.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for edt-2.3.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 29d7c4b760ee2dccf5a14ccdcfb283f01ac4672ea96c7db570418eb0e3476c16
MD5 1f8e448f78b4b55eb4307157df74972e
BLAKE2b-256 a6db8291311fdb2457052ce4519e63b4aa714963a80e23058413fd0d43fe6545

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36ca3b1f53a730f66c434e81df4cadc701ff1568e20d9595ae56b314802bf304
MD5 c777385c121aa3021c69e60e7fc8f538
BLAKE2b-256 d658027a12558a63567fd6eaa974c1807336b46d2edf5479253dcb3fd3645bab

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 74f275b9c6eae023d5d2841914d3916d22033405a3e24e81e929e97fc4b393da
MD5 43c6c5d9456e8a01a8ea512c8cf55515
BLAKE2b-256 25c5ddd136596fc29472caa6659e54954b7c2130cb09d4d474904d7c9af8c2de

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08639fdf10683c400cc91280c98e6bbda68ac3141c4cef01d5d41ee213e6938b
MD5 0a275bf8e9b037a5627abb0330c81a5d
BLAKE2b-256 e5256d3635fc874f472dcd7b03f2b48a0167aaef6fb6265de939718576565173

See more details on using hashes here.

File details

Details for the file edt-2.3.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edt-2.3.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 58b63aa7145765720656ce460713becfa981a3925b8d57e7db4a00b4ce3f7e19
MD5 ce129fc6447a300572f08e97948b0feb
BLAKE2b-256 5c396bcba3240b975d5fa40500623a5fc195d80984e8b22d66b99b7b6509dedd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page