Skip to main content

Google Earth Engine-based Species Distribution Modeling

Project description

eeSDM: Google Earth Engine-based SDM

eeSDM is a Python package designed for conducting species distribution modeling(SDM) using Google Earth Engine. This package provides researchers in ecology, environmental science, and data science with an efficient toolset to explore and predict the relationship between species distribution and environmental factors.

Features

  • Preprocessing of GBIF Occurrence Data (e.g., heatmap plotting, duplicate removal)
  • Multicollinearity Removal for Environmental Variables (VIF)
  • Generation of Pseudo-Absence Data (Full extent, spatial constraints, and environmental profiling)
  • Spatial Grid Generation
  • SDM SDM fitting and prediction
  • Compute Variable Importance scores and visualization
  • Accuracy assessment (e.g., EUC-ROC, EUC-PR, Sensitivity, Specificity) and Curve Plotting
  • Potential Distribution Plotting using Optimal Thresholds

Installation

To install the eeSDM package, you can use the following pip command:

pip install eeSDM

Usage

Here's a simple example of how to use the geokakao package:

import eeSDM
# Plot Yearly & Monthly data distribution
eeSDM.plot_data_distribution(gdf)

# Plot heatmap
eeSDM.plot_heatmap(gdf)

# Apply the function to the raw data with the specified GrainSize
Data = eeSDM.remove_duplicates(data_raw, GrainSize)
# Perform filtering using VIF (Variance Inflation Factor)
# Apply the function to remove variables with high multicollinearity
# Obtain the list of remaining column names after VIF-based filtering
filtered_PixelVals_df, bands = eeSDM.filter_variables_by_vif(PixelVals_df)
# Plot correlation heatmap
eeSDM.plot_correlation_heatmap(filtered_PixelVals_df, h_size=6)

# Generate Random Pseudo-Absence Data in the Entire Area of Interest
AreaForPA = eeSDM.generate_pa_full_area(Data, GrainSize, AOI)

# Generate Spatially Constrained Pseudo-Absence Data (Presence Buffer)
AreaForPA = eeSDM.generate_pa_spatial_constraint(Data, GrainSize, AOI)

# Generate Environmental Pseudo-Absence Data (Environmental Profiling)
AreaForPA = eeSDM.generate_pa_environmental_profiling(Data, GrainSize, AOI, predictors)

# Create a grid of polygons over a specified geometry
Grid = eeSDM.createGrid(AOI, scale=50000)
# Fit SDM
results = eeSDM.batchSDM(Grid, Data, AreaForPA, GrainSize, bands, predictors, numiter, split=0.7, seed=None)
# Plot Average Variable Importance
eeSDM.plot_avg_variable_importance(results, numiter)

# Calculate AUC-ROC and AUC-PR
eeSDM.calculate_and_print_auc_metrics(images, TestingDatasets, GrainSize, numiter)

# Calculate Sensitivity and Specificity
eeSDM.calculate_and_print_ss_metrics(images, TestingDatasets, GrainSize, numiter)

# Plot ROC and PR curves
eeSDM.plot_roc_pr_curves(images, TestingDatasets, GrainSize, numiter)

# Potential Distribution Map using the optimal threshold
DistributionMap2 = eeSDM.create_DistributionMap2(images, TestingDatasets, GrainSize, numiter, ModelAverage)

Case Study 1: Habitat Suitability and Potential Distribution Modeling of Fairy Pitta (Pitta nympha) Using Presence-Only Data

References

The content of this packges presents a conversion and enhancement of JavaScript source code provided by researchers from the Smithsonian Conservation Biology Institute. The original JavaScript code has been translated and refined into Python to achieve the same objectives.

  1. Crego, R. D., Stabach, J. A., & Connette, G. (2022). Implementation of species distribution models in Google Earth Engine. Diversity and Distributions, 28, 904–916. DOI
  2. Smithsonian SDMinGEE GitHub Repository

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eeSDM-0.1.0.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

eeSDM-0.1.0-py3-none-any.whl (3.5 kB view details)

Uploaded Python 3

File details

Details for the file eeSDM-0.1.0.tar.gz.

File metadata

  • Download URL: eeSDM-0.1.0.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for eeSDM-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5c0b9990cb6e6bc658c21288368dca25c845a200a690efb696f0f7fc450e61ef
MD5 232a02fd0b80edea3b9243ec15ea4ad2
BLAKE2b-256 3507b55514e5e82ac16659104bb6f4cc1843f3444cb992896c4ddd6fc05e45de

See more details on using hashes here.

File details

Details for the file eeSDM-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: eeSDM-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 3.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for eeSDM-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 678bf3c1f2b1dba7857fc48fd1c239bcc16d019c1878948d9075fd66586f0f33
MD5 69c187f22bea3dfb2337bc3a62a76d99
BLAKE2b-256 9c6a39083d5a78a5335da5ea2a74c91eea6f2a1143371a236ec65f835d19668c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page