Skip to main content

Google Earth Engine-based Species Distribution Modeling

Project description

eeSDM: Google Earth Engine-based SDM

eeSDM is a Python package designed for conducting species distribution modeling(SDM) using Google Earth Engine. This package provides researchers in ecology, environmental science, and data science with an efficient toolset to explore and predict the relationship between species distribution and environmental factors.

Features

  • Preprocessing of GBIF Occurrence Data (e.g., heatmap plotting, duplicate removal)
  • Multicollinearity Removal for Environmental Variables (VIF)
  • Generation of Pseudo-Absence Data (Full extent, spatial constraints, and environmental profiling)
  • Spatial Grid Generation
  • SDM SDM fitting and prediction
  • Compute Variable Importance scores and visualization
  • Accuracy assessment (e.g., EUC-ROC, EUC-PR, Sensitivity, Specificity) and Curve Plotting
  • Potential Distribution Plotting using Optimal Thresholds

Installation

To install the eeSDM package, you can use the following pip command:

pip install eeSDM

Usage

Here's a simple example of how to use the geokakao package:

import eeSDM
# Plot Yearly & Monthly data distribution
eeSDM.plot_data_distribution(gdf)

# Plot heatmap
eeSDM.plot_heatmap(gdf)

# Apply the function to the raw data with the specified GrainSize
Data = eeSDM.remove_duplicates(data_raw, GrainSize)
# Perform filtering using VIF (Variance Inflation Factor)
# Apply the function to remove variables with high multicollinearity
# Obtain the list of remaining column names after VIF-based filtering
filtered_PixelVals_df, bands = eeSDM.filter_variables_by_vif(PixelVals_df)
# Plot correlation heatmap
eeSDM.plot_correlation_heatmap(filtered_PixelVals_df, h_size=6)

# Generate Random Pseudo-Absence Data in the Entire Area of Interest
AreaForPA = eeSDM.generate_pa_full_area(Data, GrainSize, AOI)

# Generate Spatially Constrained Pseudo-Absence Data (Presence Buffer)
AreaForPA = eeSDM.generate_pa_spatial_constraint(Data, GrainSize, AOI)

# Generate Environmental Pseudo-Absence Data (Environmental Profiling)
AreaForPA = eeSDM.generate_pa_environmental_profiling(Data, GrainSize, AOI, predictors)

# Create a grid of polygons over a specified geometry
Grid = eeSDM.createGrid(AOI, scale=50000)
# Fit SDM
results = eeSDM.batchSDM(Grid, Data, AreaForPA, GrainSize, bands, predictors, numiter, split=0.7, seed=None)
# Plot Average Variable Importance
eeSDM.plot_avg_variable_importance(results, numiter)

# Calculate AUC-ROC and AUC-PR
eeSDM.calculate_and_print_auc_metrics(images, TestingDatasets, GrainSize, numiter)

# Calculate Sensitivity and Specificity
eeSDM.calculate_and_print_ss_metrics(images, TestingDatasets, GrainSize, numiter)

# Plot ROC and PR curves
eeSDM.plot_roc_pr_curves(images, TestingDatasets, GrainSize, numiter)

# Potential Distribution Map using the optimal threshold
DistributionMap2 = eeSDM.create_DistributionMap2(images, TestingDatasets, GrainSize, numiter, ModelAverage)

Case Study 1: Habitat Suitability and Potential Distribution Modeling of Fairy Pitta (Pitta nympha) Using Presence-Only Data

References

The content of this packges presents a conversion and enhancement of JavaScript source code provided by researchers from the Smithsonian Conservation Biology Institute. The original JavaScript code has been translated and refined into Python to achieve the same objectives.

  1. Crego, R. D., Stabach, J. A., & Connette, G. (2022). Implementation of species distribution models in Google Earth Engine. Diversity and Distributions, 28, 904–916. DOI
  2. Smithsonian SDMinGEE GitHub Repository

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eeSDM-0.1.1.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

eeSDM-0.1.1-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file eeSDM-0.1.1.tar.gz.

File metadata

  • Download URL: eeSDM-0.1.1.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for eeSDM-0.1.1.tar.gz
Algorithm Hash digest
SHA256 5958af34c20f7a4b6a9e22917e8c1dc4d412b2cc40798041bec7c48a79afc1c2
MD5 7682a7478e7e73911fc6f015464488bc
BLAKE2b-256 16378ffed24268754383950267ff4bee23eefbc498ac31d630138157639f6a3b

See more details on using hashes here.

File details

Details for the file eeSDM-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: eeSDM-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 3.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for eeSDM-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 740ee16ae6dad91c3df3cf19302029fb7607f3c3770db5c08f944e2e5bc7df1f
MD5 ae6618f79f36f6b0a1fc25392c632a18
BLAKE2b-256 b0f28268c3c721a21d67ea6b945f634b9ae76d3ad6da7a454de383cb6a4554cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page