Pretrained MNet model for classifying demetia subclasses (HV, AD, DLB, and iNPH)
Project description
Installation
$ pip install eeg-dementia-classification-MNet
Pretrained Weights
Pretrained weights are available on our Google Drive.
- Download 'pretrained_weights.tar.gz'.
- Extract the file using the following command:
$ tar xvf pretrained_weights.tar.gz
- Locate the extradcted 'pretrained_weights' directory at the working directory. As an illustration, the weight files (.pth) should be organized as follows:
./pretrained_weights/
├── AD_vs_DLB
│ ├── model_fold#0_epoch#045.pth
│ ├── model_fold#1_epoch#031.pth
│ ├── model_fold#2_epoch#029.pth
│ ├── model_fold#3_epoch#031.pth
│ └── model_fold#4_epoch#028.pth
├── AD_vs_DLB_vs_NPH
│ ├── model_fold#0_epoch#024.pth
│ ├── model_fold#1_epoch#035.pth
...
Usage
from eeg_dementia_classification_MNet import MNet_1000
import torch
## Parameters
DISEASE_TYPES = ["HV", "AD", "DLB", "NPH"]
## MNet
model = MNet_1000(DISEASE_TYPES, is_ensemble=True)
model.load_weights(i_fold=0)
## Feeds data
bs, n_chs, seq_len = 16, 19, 1000
x = torch.rand(bs, n_chs, seq_len)
y = model(x)
Contact
Please feel free to contact the author.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file eeg_dementia_classification_MNet-1.4.1.tar.gz
.
File metadata
- Download URL: eeg_dementia_classification_MNet-1.4.1.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9092781daa0fd03b52db0d98dfebe02f26708e00b3fff833cd36e7dc743f07a7 |
|
MD5 | c40176d7b9b2a5546300de34b613c2d6 |
|
BLAKE2b-256 | e8b71cb66d7a4d98a0352f121ae145e117aa238b7cbb1e2b3a695c73a162decc |
File details
Details for the file eeg_dementia_classification_MNet-1.4.1-py3-none-any.whl
.
File metadata
- Download URL: eeg_dementia_classification_MNet-1.4.1-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38bc74b472e969049c3c230ae0b2136bf6d930a56eb41be83ce896cd310b305b |
|
MD5 | db39bf9efae8f845628cb152614df477 |
|
BLAKE2b-256 | 1de1e4e819d4ddef7486a2bc8de7469e1d8863e0bbe5cd4c98a0035158bf8a5e |