Skip to main content

Pretrained MNet model for classifying demetia subclasses (HV, AD, DLB, and iNPH)

Project description

Installation

$ pip install eeg-dementia-classification-MNet

Pretrained Weights

Pretrained weights are available on our Google Drive.

  1. Download 'pretrained_weights.tar.gz'.
  2. Extract the file using the following command:
$ tar xvf pretrained_weights.tar.gz
  1. Locate the extradcted 'pretrained_weights' directory at the working directory. As an illustration, the weight files (.pth) should be organized as follows:
./pretrained_weights/
├── AD_vs_DLB
│   ├── model_fold#0_epoch#045.pth
│   ├── model_fold#1_epoch#031.pth
│   ├── model_fold#2_epoch#029.pth
│   ├── model_fold#3_epoch#031.pth
│   └── model_fold#4_epoch#028.pth
├── AD_vs_DLB_vs_NPH
│   ├── model_fold#0_epoch#024.pth
│   ├── model_fold#1_epoch#035.pth
...

Usage

from eeg_dementia_classification_MNet import MNet_1000
import torch

## Parameters
DISEASE_TYPES = ["HV", "AD", "DLB", "NPH"]

## MNet
model = MNet_1000(DISEASE_TYPES, is_ensemble=True)
model.load_weights(i_fold=0)

## Feeds data
bs, n_chs, seq_len = 16, 19, 1000
x = torch.rand(bs, n_chs, seq_len)
y = model(x)

Contact

Please feel free to contact the author.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file eeg_dementia_classification_MNet-1.4.1.tar.gz.

File metadata

File hashes

Hashes for eeg_dementia_classification_MNet-1.4.1.tar.gz
Algorithm Hash digest
SHA256 9092781daa0fd03b52db0d98dfebe02f26708e00b3fff833cd36e7dc743f07a7
MD5 c40176d7b9b2a5546300de34b613c2d6
BLAKE2b-256 e8b71cb66d7a4d98a0352f121ae145e117aa238b7cbb1e2b3a695c73a162decc

See more details on using hashes here.

File details

Details for the file eeg_dementia_classification_MNet-1.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for eeg_dementia_classification_MNet-1.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 38bc74b472e969049c3c230ae0b2136bf6d930a56eb41be83ce896cd310b305b
MD5 db39bf9efae8f845628cb152614df477
BLAKE2b-256 1de1e4e819d4ddef7486a2bc8de7469e1d8863e0bbe5cd4c98a0035158bf8a5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page