To compute the functional connectivity from EEG in various bands
Project description
Update
- [version = 1.2.0] Added functionality to compute imaginary part of coherency
Installation
pip install eeg-fConn
Usage
import numpy as np
from eeg_fConn import connectivity as con
# dummy data
data = np.random.rand(10,200)
# filtering data
filtered_data = con.filteration(data=data, f_min=8, f_max=12, fs=250)
# pli connectivity
M,V = con.pli_connectivity(sensors=10,data=filtered_data)
# plv connectivity
M,V = con.plv_connectivity(sensors=10,data=filtered_data)
# ccf connectivity
M,V = con.ccf_connectivity(sensors=10,data=filtered_data)
# coh connectivity
M,V = con.coh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)
# icoh connectivity
M,V = con.icoh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)
Here M and V are connectivity matrix and connectivity vector respectively.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
eeg_fConn-1.2.0.tar.gz
(1.6 kB
view details)
Built Distribution
eeg_fConn-1.2.0-py3-none-any.whl
(13.8 kB
view details)
File details
Details for the file eeg_fConn-1.2.0.tar.gz
.
File metadata
- Download URL: eeg_fConn-1.2.0.tar.gz
- Upload date:
- Size: 1.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4aecfc2ea9f116e07988bd02b2ba07ce878d83a5bec11403b7c23176284781bc |
|
MD5 | c98e8d28a1d78dfd8176f566fec6b2e9 |
|
BLAKE2b-256 | 0c7db4a7e1d02301eaeae2e3686385e03a4577e03bf4f421489237f4d765936b |
File details
Details for the file eeg_fConn-1.2.0-py3-none-any.whl
.
File metadata
- Download URL: eeg_fConn-1.2.0-py3-none-any.whl
- Upload date:
- Size: 13.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aabf5cf9919b2aab753102711532ce968d4b423dd0b1658744b9e6ceed416f21 |
|
MD5 | 01321dc8fedc7091b458884d8492844d |
|
BLAKE2b-256 | 9c33e6ec1a17e04bad10c4389fa60c07c97d26b27bdd7329bcb1b9c945f1a9e2 |