Skip to main content

Custom utility functions for exploratory factor analysis with the factor_analyzer package.

Project description

efa_utils

Custom utility functions for exploratory factor analysis with the factor_analyzer package.

Installation

Install with pip:

pip install efa_utils

For optional dependencies:

pip install efa_utils[optional]

Requirements

  • Python 3.11+
  • numpy
  • pandas
  • factor-analyzer
  • statsmodels (for reduce_multicoll and kmo_check)
  • matplotlib (optional, for parallel_analysis and iterative_efa with parallel analysis option)
  • reliabilipy (optional, for factor_int_reliability)
  • scikit-learn (optional, for PCA functionality in iterative_efa)

Functions

efa_utils.reduce_multicoll

Reduces multicollinearity in a dataset intended for EFA. Uses the determinant of the correlation matrix to determine if multicollinearity is present. If the determinant is below a threshold (0.00001 by default), the function will drop the variable with the highest VIF until the determinant is above the threshold.

efa_utils.kmo_check

Checks the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO) and Bartlett's test of sphericity for a dataset. Main use is to print a report of total KMO and item KMOs, but can also return the KMO values.

efa_utils.parallel_analysis

Performs parallel analysis to determine the number of factors to retain. Requires matplotlib (optional dependency).

efa_utils.iterative_efa

Performs iterative exploratory factor analysis or principal component analysis (PCA). Runs EFA/PCA with an iterative process, eliminating variables with low communality, low main loadings or high cross loadings in a stepwise process.

For EFA (default), uses factor_analyzer package. For PCA (when use_pca=True), uses scikit-learn's PCA implementation. PCA functionality requires scikit-learn (optional dependency).

If parallel analysis option is used, it requires matplotlib (optional dependency).

efa_utils.print_sorted_loadings

Prints strongly loading variables for each factor. Will only print loadings above a specified threshold for each factor.

efa_utils.rev_items_and_return

Takes an EFA object and automatically reverse-codes (Likert-scale) items where necessary and adds the reverse-coded version to a new dataframe. Returns the new dataframe.

efa_utils.factor_int_reliability

Calculates and prints the internal reliability for each factor. Takes a pandas dataframe and dictionary with name of factors as keys and list of variables as values. Requires reliabilipy (optional dependency).

Usage

Here's a basic example of how to use efa_utils with both EFA and PCA:

import pandas as pd
from efa_utils import reduce_multicoll, kmo_check, parallel_analysis, iterative_efa

# Load your data
data = pd.read_csv('your_data.csv')

# Reduce multicollinearity
reduced_vars = reduce_multicoll(data, data.columns)

# Check KMO
kmo_check(data, reduced_vars)

# For EFA:
# Perform parallel analysis
n_factors = parallel_analysis(data, reduced_vars)

# Perform iterative EFA
efa, final_vars = iterative_efa(data, reduced_vars, n_facs=n_factors)

# Print EFA results
print("EFA Results:")
print(f"Final variables: {final_vars}")
print(efa.loadings_)

# For PCA:
# Perform parallel analysis with components
n_components = parallel_analysis(data, reduced_vars, extraction="components")

# Perform iterative PCA
pca, final_vars = iterative_efa(
    data, reduced_vars, n_facs=n_components,
    use_pca=True  # This enables PCA instead of EFA
)

# Print PCA results
print("\nPCA Results:")
print(f"Final variables: {final_vars}")
print(f"Explained variance ratio: {pca.explained_variance_ratio_}")
# Calculate loadings (standardized components)
loadings = pca.components_.T * np.sqrt(pca.explained_variance_)
print("Component loadings:")
print(loadings)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

efa_utils-0.7.26.tar.gz (24.6 kB view details)

Uploaded Source

Built Distribution

efa_utils-0.7.26-py3-none-any.whl (25.2 kB view details)

Uploaded Python 3

File details

Details for the file efa_utils-0.7.26.tar.gz.

File metadata

  • Download URL: efa_utils-0.7.26.tar.gz
  • Upload date:
  • Size: 24.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Windows/11

File hashes

Hashes for efa_utils-0.7.26.tar.gz
Algorithm Hash digest
SHA256 338e4160ced8f9b27b335d072fd15e3fb3e57d5336bdeeb7433f6d70de50d234
MD5 eaa1715af68a52c30e7b23769945c59c
BLAKE2b-256 5e9bd66742e82a8ca2eba810405749117364f5210897d2f32d7d520e8ccc83d4

See more details on using hashes here.

File details

Details for the file efa_utils-0.7.26-py3-none-any.whl.

File metadata

  • Download URL: efa_utils-0.7.26-py3-none-any.whl
  • Upload date:
  • Size: 25.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Windows/11

File hashes

Hashes for efa_utils-0.7.26-py3-none-any.whl
Algorithm Hash digest
SHA256 784301b9d57d36017421fd2e443baf10a0ca2a523b3c3ab42653aede60184642
MD5 258892a19e8868d2e977165afcff5cd6
BLAKE2b-256 b3af15b63f955b203bca8bd08b18d8fe213fa1d43b47451a5ca88405f0211633

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page