Skip to main content

Efficient-Det Implementation in Keras

Project description

EfficientDet

Start with following command:

export PYTHONPATH="$PWD/src"

All commands should be executed in efficientdet/.

To test trained model on validation dataset you can use the jupyter notebook or python script in examples/.

For your own implementation set the dataset path and path to the trained model. Default paths are set to efficient/dataset.

To run all tests:

python3 -m unittest

To train neural network

python3 src/efficient_det/train.py --dataset_path /path/to/dataset/

When using Ray Tune verbose is default set to False. Use W&B for visualization.

Pip

python3 -m efficient_det.run_training --dataset_path ~/efficientdet/voc_data --use_wandb

Imports with pip needs to be like

from efficient_det.models.efficient_net import create_efficientnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

efficient-det-0.0.13.tar.gz (27.8 kB view details)

Uploaded Source

Built Distribution

efficient_det-0.0.13-py3-none-any.whl (36.6 kB view details)

Uploaded Python 3

File details

Details for the file efficient-det-0.0.13.tar.gz.

File metadata

  • Download URL: efficient-det-0.0.13.tar.gz
  • Upload date:
  • Size: 27.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.9

File hashes

Hashes for efficient-det-0.0.13.tar.gz
Algorithm Hash digest
SHA256 3aebd899b68850ae546c4840bc0fccb9d9e74822683aa08d1c2d77225ec90634
MD5 6e6ea33f0543818cc8d6995bb164b74e
BLAKE2b-256 beed38c7a10722b9baa5335ede8da3c06c00972bf19406841880d9bc5462721a

See more details on using hashes here.

File details

Details for the file efficient_det-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: efficient_det-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 36.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.9

File hashes

Hashes for efficient_det-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 9c84edb9039c267325b61935a8e5cb67409398ce51b5efaaae9c85d888e38c96
MD5 c326725e9ad96b4aa5b28f1ceffaecc8
BLAKE2b-256 ccca59970b73e03344c6b9576af17a103f0f03aac310678eb2be680132def24c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page