Pretrained Pytorch model file for EfficientNet Lite1
Project description
efficientnet-lite1-pytorch-model
Pretrained Pytorch model file for EfficientNet Lite1
Installation
pip install efficientnet_lite1_pytorch_model
Basic Usage
from efficientnet_lite1_pytorch_model import EfficientnetLite1ModelFile
print( 'model file path is %s' % ( EfficientnetLite1ModelFile.get_model_file_path() ) )
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage
project template.
- Cookiecutter: https://github.com/audreyr/cookiecutter
audreyr/cookiecutter-pypackage
: https://github.com/audreyr/cookiecutter-pypackagecookiecutter-ml-model-files
: https://github.com/ml-illustrated/cookiecutter-ml-model-files
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file efficientnet_lite1_pytorch_model-0.1.0.tar.gz
.
File metadata
- Download URL: efficientnet_lite1_pytorch_model-0.1.0.tar.gz
- Upload date:
- Size: 20.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.19.9 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a6b215ab744a7a76c26bd6a59b350e5c893ec64466f3210a1bdac150751a2fa |
|
MD5 | 42086fc805ab7dab00f912c22a5e681d |
|
BLAKE2b-256 | 6c810c7ecfb16dfeb738f84c6f2f0071975a578b3a8dbb948243b6c8e027747e |
File details
Details for the file efficientnet_lite1_pytorch_model-0.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: efficientnet_lite1_pytorch_model-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 20.2 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.19.9 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa2b720dd1769e80645c7101e15a30a82b59ca7a1f1205cbbc7f7ac2d4e46a24 |
|
MD5 | 3782c73a5fdfa2e8d1be7709fbe62813 |
|
BLAKE2b-256 | 48f46bc4c43c6ebe0f22da08682556745c86e2a91b7d615359388c3eaca456e8 |