Skip to main content

A toolbox for efficient global optimization

Project description

Efficient Global Optimization toolbox in Rust

EGObox - Efficient Global Optimization toolbox

tests pytests linting DOI

Rust toolbox for Efficient Global Optimization inspired by the EGO implementation in the SMT Python library.

The egobox package is twofold:

  1. for end-users: a Python module, the Python binding of the optimizer named Egor and the surrogate model Gpx, mixture of Gaussian processes, written in Rust.
  2. for developers: a set of Rust libraries useful to implement bayesian optimization (EGO-like) algorithms,

The Python module

Installation

pip install egobox

Egor optimizer

import numpy as np
import egobox as egx

# Objective function
def f_obj(x: np.ndarray) -> np.ndarray:
    return (x - 3.5) * np.sin((x - 3.5) / (np.pi))

# Minimize f_opt in [0, 25]
res = egx.Egor(egx.to_specs([[0.0, 25.0]]), seed=42).minimize(f_obj, max_iters=20)
print(f"Optimization f={res.y_opt} at {res.x_opt}")  # Optimization f=[-15.12510323] at [18.93525454]

Gpx surrogate model

import numpy as np
import egobox as egx

# Training
xtrain = np.array([[0.0, 1.0, 2.0, 3.0, 4.0]]).T
ytrain = np.array([[0.0, 1.0, 1.5, 0.9, 1.0]]).T
gpx = egx.Gpx.builder().fit(xtrain, ytrain)

# Prediction
xtest = np.linspace(0, 4, 20).reshape((-1, 1))
ytest = gpx.predict(xtest)

See the tutorial notebooks and examples folder for more information on the usage of the optimizer and mixture of Gaussian processes surrogate model.

The Rust libraries

egobox Rust libraries consists of the following sub-packages.

Name Version Documentation Description
doe crates.io docs sampling methods; contains LHS, FullFactorial, Random methods
gp crates.io docs gaussian process regression; contains Kriging, PLS dimension reduction and sparse methods
moe crates.io docs mixture of experts using GP models
ego crates.io docs efficient global optimization with constraints and mixed integer handling

Usage

Depending on the sub-packages you want to use, you have to add following declarations to your Cargo.toml

[dependencies]
egobox-doe = { version = "0.24" }
egobox-gp  = { version = "0.24" }
egobox-moe = { version = "0.24" }
egobox-ego = { version = "0.24" }

Features

The table below presents the various features available depending on the subcrate

Name doe gp moe ego
serializable ✔️ ✔️ ✔️
persistent ✔️ ✔️(*)
blas ✔️ ✔️ ✔️
nlopt ✔️ ✔️

(*) required for mixed-variable gaussian process

serializable

When selected, the serialization with serde crate is enabled.

persistent

When selected, the save and load as a json file with serde_json crate is enabled.

blas

When selected, the usage of BLAS/LAPACK backend is possible, see below for more information.

nlopt

When selected, the nlopt crate is used to provide optimizer implementations (ie Cobyla, Slsqp)

Examples

Examples (in examples/ sub-packages folder) are run as follows:

cd doe && cargo run --example samplings --release
cd gp && cargo run --example kriging --release
cd moe && cargo run --example clustering --release
cd ego && cargo run --example ackley --release

BLAS/LAPACK backend (optional)

egobox relies on linfa project for methods like clustering and dimension reduction, but also try to adopt as far as possible the same coding structures.

As for linfa, the linear algebra routines used in gp, moe ad ego are provided by the pure-Rust linfa-linalg crate, the default linear algebra provider.

Otherwise, you can choose an external BLAS/LAPACK backend available through the ndarray-linalg crate. In this case, you have to specify the blas feature and a linfa BLAS/LAPACK backend feature (more information in linfa features).

Thus, for instance, to use gp with the Intel MKL BLAS/LAPACK backend, you could specify in your Cargo.toml the following features:

[dependencies]
egobox-gp = { version = "0.24", features = ["blas", "linfa/intel-mkl-static"] }

or you could run the gp example as follows:

cd gp && cargo run --example kriging --release --features blas,linfa/intel-mkl-static

Citation

DOI

If you find this project useful for your research, you may cite it as follows:

@article{
  Lafage2022, 
  author = {Rémi Lafage}, 
  title = {egobox, a Rust toolbox for efficient global optimization}, 
  journal = {Journal of Open Source Software} 
  year = {2022}, 
  doi = {10.21105/joss.04737}, 
  url = {https://doi.org/10.21105/joss.04737}, 
  publisher = {The Open Journal}, 
  volume = {7}, 
  number = {78}, 
  pages = {4737}, 
} 

Additionally, you may consider adding a star to the repository. This positive feedback improves the visibility of the project.

References

Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J. R. R. A., & Morlier, J. (2019). Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design. Aerospace Science and Technology, 90, 85–102. https://doi.org/10.1016/j.ast.2019.03.041

Bouhlel, M. A., Bartoli, N., Otsmane, A., & Morlier, J. (2016). Improving kriging surrogates of high-dimensional design models by partial least squares dimension reduction. Structural and Multidisciplinary Optimization, 53(5), 935–952. https://doi.org/10.1007/s00158-015-1395-9

Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. R. A. (2019). A python surrogate modeling framework with derivatives. Advances in Engineering Software, 102662. https://doi.org/10.1016/j.advengsoft.2019.03.005

Dubreuil, S., Bartoli, N., Gogu, C., & Lefebvre, T. (2020). Towards an efficient global multi- disciplinary design optimization algorithm. Structural and Multidisciplinary Optimization, 62(4), 1739–1765. https://doi.org/10.1007/s00158-020-02514-6

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492. https://www.researchgate.net/publication/235709802_Efficient_Global_Optimization_of_Expensive_Black-Box_Functions

Diouane, Youssef, et al. "TREGO: a trust-region framework for efficient global optimization." Journal of Global Optimization 86.1 (2023): 1-23. https://arxiv.org/pdf/2101.06808

smtorg. (2018). Surrogate modeling toolbox. In GitHub repository. GitHub. https://github.com/SMTOrg/smt

License

Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

egobox-0.24.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

egobox-0.24.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.24.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.24.0-cp312-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

egobox-0.24.0-cp312-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86

egobox-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

egobox-0.24.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

egobox-0.24.0-cp312-cp312-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

egobox-0.24.0-cp312-cp312-macosx_10_12_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

egobox-0.24.0-cp311-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

egobox-0.24.0-cp311-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86

egobox-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

egobox-0.24.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

egobox-0.24.0-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

egobox-0.24.0-cp311-cp311-macosx_10_12_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

egobox-0.24.0-cp310-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

egobox-0.24.0-cp310-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86

egobox-0.24.0-cp310-cp310-manylinux_2_35_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

egobox-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

egobox-0.24.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

egobox-0.24.0-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

egobox-0.24.0-cp310-cp310-macosx_10_12_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

egobox-0.24.0-cp39-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

egobox-0.24.0-cp39-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86

egobox-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

egobox-0.24.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

egobox-0.24.0-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

egobox-0.24.0-cp39-cp39-macosx_10_12_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

egobox-0.24.0-cp38-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

egobox-0.24.0-cp38-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86

egobox-0.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

egobox-0.24.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

egobox-0.24.0-cp37-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.7 Windows x86-64

egobox-0.24.0-cp37-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.7 Windows x86

egobox-0.24.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

egobox-0.24.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file egobox-0.24.0.tar.gz.

File metadata

  • Download URL: egobox-0.24.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0.tar.gz
Algorithm Hash digest
SHA256 4b2215beb4361dad538a3937bb90cff050049a32ab5654b6da98daf9df16ef56
MD5 77e7e93fbcb3658c73caea0b506c2415
BLAKE2b-256 4a8f4c9a6bb9c57be42b7b1eff74b260074e8445ef787be15ae781fe4da13168

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 538c63f6eee3918567fbf32b0912f0b4e4f1d2985d23c34f7c6fe3570a10a6c6
MD5 08294455731a636c2b528f96f2a15f53
BLAKE2b-256 4c6324d1a9b08ff9e7ba106c3341848013797af946ceeedc979a9ff7985c85a2

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 33820bee621aa34135ef160d55e5364789e42d43a4e902fea7c73d685909928d
MD5 84b8782278fdab0a40e0e6c6dc0540ee
BLAKE2b-256 21752c267461dacbd1f2626f9af495f993d61c3dd137c9c7b416721e16d5a2be

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 03152f73553591a1e0d37fd91a5e55c70a43cd9401b5451b44668154bd58048f
MD5 a6d13406c54df3141abe717d4f868dfe
BLAKE2b-256 82befc133b5a8e50ffe417466d979764cf2fb81c2178ccf3eec0d29e6eb0af4b

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp312-none-win32.whl.

File metadata

  • Download URL: egobox-0.24.0-cp312-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 25884c66732f4a58e1889cfb509e9cbe5cf6b4a2c5a1408c4fb55eb08212ab9a
MD5 62699a8fd297fe30e70ea40d33c8fff8
BLAKE2b-256 77b864b9a7d1a140d44417d0e525df2fd6d821d4ce03de888e4ff32ba390a25c

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f14309cabf0e0c76514b8699a56a6f661b170f2f9211efa43cc2e2003d3160a
MD5 e21e8b2f1e28f6a427a218c603cfcc26
BLAKE2b-256 41d8cd3feb0340469d40327c39a8813b90d0eb508c6b71e42c2776167b308087

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d7cd7679c0b7c7f469d9e5cee4ef9aa1026836e392672e5966aa955c773da922
MD5 0d0023b92e419ff9be8cb57a430d8d62
BLAKE2b-256 de38170a7f8eea4afc8bfbfa0b237bc11d98ac9dddba7be9237c9bfc10a24695

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c21b30e7b37e2358fa03093c03d580f5a0f14b3224e0243ec91a228ba911625
MD5 8f42c1a86bb2a5dbe5f7e5f61e9ceb5d
BLAKE2b-256 f2a81696ca2fc0ef43f7fd6208b4421f9acc04e3bdebe89b9b1bd96ff950635f

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9980a63b8202eacba29f358eb8fab8286d09d9466e678dc1e508b23352090761
MD5 ab28eef38a512347450a13854722ce12
BLAKE2b-256 f47c260204ae629373d0b5eca735fef68d14d145529d885cf589fbe5726fab1b

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 0d32bd5ac378a153b5015e54be00d10990f5f0b77713dc0fc1388165a196ccc5
MD5 92395727d52c21929c31ea6dc26c1d89
BLAKE2b-256 d88044d2ee9896af73521e02eedabe8f3ab402fcc5259925b644121f2c32eb8c

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp311-none-win32.whl.

File metadata

  • Download URL: egobox-0.24.0-cp311-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 9a9dc522a84b8707e495bad438ea191dc4bd8cbed581c5d3d68fecce83f59a2c
MD5 2791f49f0daa3232ccb9d378046582ce
BLAKE2b-256 06e9c8b268c6d0527df0f502f44da78d1e1131478eab4189939ea9a167fad980

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1badae8dad84586c9e0dfa7609478a793fddc2db4cf397d10b10ffea3200da0e
MD5 611a04d6d1fa96e903fb0fc09a0ceb3e
BLAKE2b-256 e590751604f583cc0376c00b1cbc26b770a31a787d1272e7166e6dc47dd5ebde

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4cf3a25185d4323800f06f328b1b12d43bf04039daf6a95910beb2fad1c4848c
MD5 ff40549ac1f991b10aee8d5c53912474
BLAKE2b-256 be4350ac2c6e931b5abd2865b66a2efd951116d52e2a61f15564b0bfc855ade7

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84a9361b1f0d3888f9a7c7bfa720d5304d890b0a25a889297a45c8bd175c846a
MD5 6d02ba33950fa01a19e27d419b2544e6
BLAKE2b-256 f1a77cbc72fe12604cacd02932c7c27a169641087f8b06760af2dfa45d8fe649

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 204c059bc9bb2cf25373ad97a17cc15e875a18abbd2fbcd9765b52dd286eba25
MD5 866752688a399220094d3cab2c99af6b
BLAKE2b-256 5d665c4d643f76b03644b2cd8338556284aa5b48fa6123a007e97f8f4b9ea460

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 304d348ed07e0b2f74f0472a5efd99f6950d33ec031b6440f165c557cd7a4cf8
MD5 5888171e9205bb12ea347bfa7af40216
BLAKE2b-256 bc6a72006651f74b1a2ec3091beb9853ddd4d0d3924466d076743f83f0c27427

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-none-win32.whl.

File metadata

  • Download URL: egobox-0.24.0-cp310-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 dbe1fde1e1bb59fc6009520adacb1c7b265087b1a5af4220fd00474fe86bff9d
MD5 2023f6d72614252d7cfe7eef6ce7afde
BLAKE2b-256 8502469ec696650a000af9d543731003ddea84e951233ff394608e2d5619d99f

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 55e8c521118cfa3b89fa87314c7703c260bd6b58e506f41d2493ae9ffe4fcfc7
MD5 a5d5a5255b6056c9493dfe340120d630
BLAKE2b-256 cad95ee12b38ba11ac9dc4d2be18c01d68cbfa63cade722b6c2ed56b73fbdadd

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b1e45c1235f866bbc46f0ef928c50990ede785e3412eb105d3fbbd2f4ce28db
MD5 a42e3178f319a7f463d90532e374321b
BLAKE2b-256 2c6dcd2146d14552d3adcb2dae8d0cb3b1a73e18d01128462328806246bc8c0d

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b5c26262d93d8f56075b647cfba1d3f4d25781889b2917b8fd38b347b83b45f
MD5 d4b3c88a9b43ffff3815e3e1b8c213e9
BLAKE2b-256 87e3c0d17c9a02616255ec4ba6bc73af7bb3d00c7bb428519eb37dbd013c357a

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8b7827f73f5dcfb64765df3261b673c50423d670eba7f78da3a33ffacf93796
MD5 1cc45b59d29da7b98b3f4778e1072beb
BLAKE2b-256 900d150b2e5fe61a3809cf5e64ecca49b67318113e9df1ba1b77062ea999ab7d

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5084bd1c2512ceef5a23bf99f1b25ba911011b3a86b2c92c38ed489eaae61f6b
MD5 1226ff8ab01a91bf41d3f7ce29e51ee3
BLAKE2b-256 f13118805213eed5b3df35260dd1ec35e62cb81d48b967ab2c633f289bd6f4e3

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 258025ce91351a7fdb267eb634cd63fcd6ac457be59b3c761de9d1eee4b9d1d5
MD5 d494c6f7ba324f81aefd51d742201ec8
BLAKE2b-256 bb86148a5330ed097bb47df2d87ddcebedc15585ececa1c2e6da793ab673f927

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp39-none-win32.whl.

File metadata

  • Download URL: egobox-0.24.0-cp39-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 065656f3482b278b8f76ea2df049417174bcce81d2e061f3bb9042e5881038e1
MD5 ad44fbc1134d40771df1a84b92bc1fe7
BLAKE2b-256 bea3845ca8886c2cf9329eb9c5c8ba5f09ffa5d656f64f937399489042b69bb9

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84907739a13ce01eea7e735e0146b4c9c2e31108304c780b36e99a8ac210c67a
MD5 d30e5593dc47c654ad25a654218d0641
BLAKE2b-256 0c1a97962fe2a00e43e5e6d2561d6b8f70dfcee519a96c7edc2df1fecbe1527a

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 35bf6a66f7a7b4bc46aa0e2a1b40cd3916d34a2eeebd953a86f5b72e9d13a25e
MD5 4788f6d76d28f6e32e13a59f64504d38
BLAKE2b-256 4591d5c6d0b79b2df4062b4d4f66268d594e3cfd93ad8ee449291826632530fc

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81bc968de593c67d26a0ccbc1fdc40748e7d16b229a3d32efe4d68108a84f14e
MD5 fe53362fca9a740dc0ac52c4ac719e23
BLAKE2b-256 02a19be61407887274fb5f160d00133fb2b952c92ecb7e535a7390f3d704278f

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 eaa8d542bdcb4dad95672a3641d7a5ab18c10b9cd61ac4eafba33859d75a37ce
MD5 74efd7d8d75e758dd1358360a7213602
BLAKE2b-256 ecbdaf218668e56b051b2cc0c0a88ecccc451187a2a49c88e4fa753c02170b97

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 bd9604b871c718323ee3e752631fbdd5d7048d80eaf982e17829cb74a0687a77
MD5 6c967f7089099ccffdfd9138e0714c13
BLAKE2b-256 062b9c4cb9ce436c17da19c13d425845b544e0a096b8a7ca38942346738b96cd

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp38-none-win32.whl.

File metadata

  • Download URL: egobox-0.24.0-cp38-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 997686daa77f74101b18da54abf61083afc7322a276b3fdd97bffc41773f3fbd
MD5 92e79fe8e1aa3f252bf5df2325f9bc8b
BLAKE2b-256 240e9edd6ace5f9d36efb4b563cf4c30a9a2f6038e0582553cee7e9e80b37460

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84f801e251166c9df23cca4288d878c7468b8f49d1b160ed1cb4cbafe0072ffe
MD5 607ae1a207bfbc8657cae64416c9bde7
BLAKE2b-256 57bc8328f2feaa3407178a74c762c2b32436cb4848b720c7736edae2e88a8652

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 36dde45565cc1bb2cf1b914dc843f13bad0c4360090cad85c8568342f2961f57
MD5 383c21089c3937dc5236858a1bdda492
BLAKE2b-256 0b8d908c8c03679686d0aba50184db5743d4273bdcdcec7154bd0f87ce6f3f75

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 7bc3015764be25d084b4ad1030ad661a0452f0cb9321d0faa562b66ae8089f94
MD5 3b701fe3577c08ecf6820a05049a4d2a
BLAKE2b-256 ad6caa8f2b4eea660d4d8dfc40f56d2e9e03601d90dac33d0549f69251bb613d

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp37-none-win32.whl.

File metadata

  • Download URL: egobox-0.24.0-cp37-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for egobox-0.24.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 c71668415c9c3d7a2e6ae6d076b389a01120d45e81cf28514b0f7d6175442b97
MD5 67071d3ce1982d9204f906901a89e4bc
BLAKE2b-256 61586d9551e714043df7dcad05998947c9b0679b1408902588fc7e03f3b02e13

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2abfff272fc6b0cdd3723df69fc04d855b17e620b15a24930ed9aba70a3b1a80
MD5 81a759529b7126de7032815a713f0260
BLAKE2b-256 0bc315fa56cdbe26ffdf0d28f56af10cc0a081c5078cb0950e5af62461eebca4

See more details on using hashes here.

File details

Details for the file egobox-0.24.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.24.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b2723b802776b7d9ebee404b0ce262edc426b2d35a4748c873e83b368195798
MD5 0f10e438e201ef0187b2fdfbb2ed731d
BLAKE2b-256 391d4962524e3f7db55dd7a4156aa7127f146f7adec474035a3185c1815023d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page